Fabrication and enhanced visible-light photocatalytic activity of carbon self-doped TiO$_2$ sheets with exposed {001} facets

Jiaguo Yua,*, Gaopeng Daia, Quanjun Xianga and Mietek Jaroniecb,*

aState Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122#, Wuhan 430070, P. R. China

bDepartment of Chemistry, Kent State University, Kent, Ohio 44242, USA.

Figure S1. A) Slab model of anatase TiO$_2$ single crystal. B) Equilibrium model of anatase TiO$_2$ single crystal.

Calculation of percentage of {001} facets1,2

$S_{001} = 2a^2$

$S_{101} = 8(\frac{1}{2}EG \times b - \frac{1}{2}EF \times a)$
\[S_{001} \% = \frac{S_{001}}{S_{001} + S_{101}} \]

\[= \frac{2a^2}{2a^2 + 8(\frac{1}{2} EF \times b - \frac{1}{2} EF \times a)} = \frac{a^2}{a^2 + 4(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \cos \theta \times b - \frac{1}{2} \times \frac{1}{2} \cos \theta \times a)} \]

\[= \frac{a^2}{a^2 + b^2 - (a^2 \cos \theta)} = \frac{1}{1 + \frac{b^2 - (a^2 \cos \theta)}{a^2 \cos \theta}} = \frac{\cos \theta}{\cos \theta + \frac{b^2}{a^2} - 1} = \frac{\cos \theta}{\cos \theta + (\frac{a}{b})^{-2} - 1} \]

\[= \frac{\cos 68.3^\circ}{\cos 68.3^\circ + (\frac{490nm}{552nm})^{-2} - 1} = 57.8\% \]

Here \(\theta \) is the theoretical value for the angle between the [001] and [101] facets of anatase. As indicated in the slab model, two independent parameters \(b \) and \(a \) denote lengths of the side of the bipyramid and the side of the square \{001\} ‘truncation’ facets, respectively. The values of \(b \) and \(a \) are equal to 552 and 490 nm, respectively; these values were measured directly from Fig. 2b. The ratio of highly reactive \{001\} facets to the total surface area can be described by the value of \(S_{001}/S \) or \(a/b \) (where 0 \(\leq a/b \leq 1 \)). \(a/b \) is the degree of truncation.

Figure S2. XPS survey spectra of the CTS (a), CTNP (b), TNS (c) and TiC (d) samples. Inset shows the high-resolution XPS spectrum of F1s in CTS.