Direct Preparation of 1-PSA Modified Graphene Nanosheets by Supercritical Fluidic Exfoliation and Its Electrochemical Properties

Ji-Hoon Jang123, Dinesh Rangappa12*, Young-Uk Kwon3, and Itaru Honma12*

1Multidisciplinary Research for Advanced Materials, Tohoku University 2-1-1, Katahira, Aoba-ku, Sendai 980-8577, Japan, 2Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Central 2, Umezono 1-1-1, Tsukuba, Ibaraki 305-8568, Japan, 3Department of Chemistry, BK-21 School of Chemical Materials Science, SAINT, HINT, Sungkyunkwan University, cheon-cheon dong 300, Suwon 440-746, Korea
Figure S1. A degree of Raman G band shift with varying concentration ratio of 1-PSAs/Graphite.

Figure S2. The Raman microscopic images of imGNS-1, which show 2D band measured 105 spots.
Figure S3. The relationship between the ratio of 1-PSAs to graphite with the fraction of peak area of R-SO₃H and -OH from FT-IR measurement.

Figure S4. AFM images of (a) pure graphene monolayer's topography image (1.4 x 1.3 μm) and the height profiles 650 nm along the x-axis; (b) imGNS multilayer topography image (1.5 x 1.8μm) and the height profiles 1550 nm along the x-axis, obtained from positions A and B indicated by the white lines images.
Figure S5. Charge-discharge profiles of a) imGNS-1, b) imGNS-2, c) imGNS-3, d) imGNS-4 and e) pure graphene which were measured with rate of 0.01 A·g⁻¹ repeatedly for 30 cycles.