Silica and hybrid silica hollow spheres from imidazolium-based templating agents

Montserrat Trilla,1 Xavier Cattoën,2 Christophe Blanc,3 Michel Wong Chi Man2,* and Roser Pleixats1,*

1Chemistry Department, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
Fax: (+34)-93-581-1265, e-mail: roser.pleixats@uab.es
2Institut Charles Gerhardt Montpellier (UMR5253, CNRS-UM2-ENSCM-UM1) 34296 Montpellier, France. Fax: (+33)-46714-4353, email: michel.wong-chi-man@enscm.fr
3Laboratoire des Colloïdes, Verres et Nanomatériaux, CNRS, UMR 5587, Université de Montpellier II, 34095 Montpellier, Cédex 05, France.

Supporting Information

Contents

Figure S1	FTIR spectrum of M1
Figure S2	N₂ adsorption-desorption analysis of M1
Figure S3	PXRD of M1
Figure S4	N₂ adsorption-desorption analysis of M2
Figure S5	²⁹Si CP-MAS NMR spectrum of H
Figure S6	¹³C CP-MAS NMR spectrum of H
Figure S7	Schematic representation of the mechanism of formation of H
Figure S1: FTIR spectrum of M1.
Figure S2

Figure S2: N₂ adsorption-desorption isotherm (left) and pore size distribution (BJH model on the desorption branch) (right) of M1.
Figure S3: PXRD of silica M1.
Figure S4: N$_2$ adsorption-desorption isotherm of M2.
Figure S5: 29Si solid state CP-MAS NMR spectrum of H deconvoluted into 3 components ($T_1 = \text{C-Si(OH)}_2(\text{OSi})$; $T_2 = \text{C-Si(OH)}(\text{OSi})_2$; $T_3 = \text{C-Si(OSi)}_3$).
Figure S6

Figure S6: 13C solid state CP-MAS NMR spectrum of H.
Figure S7: Proposed mechanism of formation of hybrid silica H.