Electronic Supplementary Information

Chemistry in a confined space: characterization of nitrogen-doped titanium oxide nanotubes produced by calcining ammonium trititanate nanotubes

Jui-Chun Chang, Wei-Je Tsai, Tsai-Chin Chiu, Chih-Wei Liu, Jiunn-Hsing Chao, and Chiu-Hsun Lin*

a Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan E-mail: chlin@cc.ncue.edu.tw Tel: 886-4-7232105 ext. 3541 Fax: 886-4-7292361

b Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu, 300 Taiwan

Additional HRTEM Data. HRTEM data verify that the calcined NH₄TNT was a hollow tube at 673 K and a solid fiber at 773 K. The TEM micrographs are depicted in Figures 1 and 2 below. The micrograph in Figure 1 shows that the material calcined at 673 K clearly has tubular pores with a diameter of about 4 nm. The dimensions of the lattice fringe indicates that it contains a mixture of (001) plane of TiO₂ (B) phase and (101) plane of anatase phase. The micrograph in Figure 2 demonstrates that the material calcined at 773 K is a solid fiber and its crystalline composition is mainly anatase phase.
Figure S1 The HRTEM micrograph of NH₄TNT that was calcined at 673 K.

Figure S2 The HRTEM micrograph of NH₄TNT that was calcined at 773 K.

Emission Spectrum of the Light Source. The emission spectrum of the fluorescent lamp ($\lambda_{\text{max}} = 445$ nm, Taiwan Fluorescent Lamp Company) used in the photocatalytic activity tests is depicted below.
Figure S3 The emission spectrum of the light source.