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Figure S1. EPR spectra of G,BPDS-2(TEMPO), G,NDS-2(TEMPO), G,ABDS-"2(TEMPO)-2(MeOH),
G,BPDS-2(MeO-TEMPO), G,ABDS-2(MeO-TEMPO)-2(MeOH), and G,BPDS-(oxo-TEMPO)-(MeOH)-(H,0).

Figure S2. Effect of anisotropy in the EPR spectra of G,BPDS-2(TEMPO), G,BPDS-2(MeO-TEMPO), and
G,ABDS A(TEMPO)-2(MeOH).

Figure S3. Plot of: (A) ¥mo1 vs- T; (B) 1/ymo1 vS. T; (C) ymotT vs. T for GobABDS-Y2(MeO-TEMPO)-2(MeOH).
Figure S4. Plot of: (A) ymo1 vs- T; (B) 1/ymo1 8- T; (C) ymoiT vs. T for G,BPDS-2(MeO-TEMPO).

Figure S5. Plot of: (A) ymol vs- T; (B) 1/xmot vS. T; (C) ymoiT vs. T for G,BPDS-(oxo-TEMPO)-(MeOH)-(H,0).
Figure S6. Plot of: (A) ymo1 vs- T; (B) 1/ymo1 vS- T; (C) ymoT vs. T for TEMPO.

Figure S7. Plot of: (A) ymo1 vs- T; (B) 1/xmot vs- T; (C) Yo vs. T for MeO-TEMPO.

Figure S8. Plot of: (A) ymo1 vs- T; (B) 1/ymo1 vS. T; (C) ymoiT vs. T for oxo-TEMPO.

Figure S9. The experimental y,,, data of G,BPDS-2(TEMPO) fitted with the 1-D chain Bonner-Fisher, Hatfield,
and Pade models.

Figure S10. The experimental y,,,; data of G,NDS-2(TEMPO) fitted with the 2-D square-planar model.
Figure S11. Plot of M,,,,: vs. H for G,ABDS-%(TEMPO)-2(MeOH).

Figure S12. Plot of M, vs. H for G,ABDS-Y2(MeO-TEMPO)-2(MeOH).

Figure S13. Plot of M,,,j,: vs. H for G,BPDS-2(MeO-TEMPO).

Figure S14. Plot of M. vs. H for G,BPDS:(oxo-TEMPO)-(MeOH)-(H,0).

Figure S15. Plot of M1, vs. H for TEMPO.

Figure S16. Plot of My, vs. H for MeO-TEMPO.

Figure S17. Plot of My, vs. H for oxo-TEMPO.
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Figure S1. EPR spectra of the GDS inclusion compounds at room temperature. EPR experiments of
G,BPDS-2(TEMPO), GoNDS-2(TEMPO), G.BPDS-2(MeO-TEMPO), and G2,BPDS-(oxo-TEMPO)-(MeOH)-(H20) were
performed in a 20 GHz field, whereas those of G>ABDS-2(TEMPO)-/>2(MeOH) and G>ABDS-/2(MeO-
TEMPO)-2(MeOH) were performed in a 25 GHz field due to a weaker magnetic response. The direction of the
applied magnetic field (H) is parallel to the longest physical dimension of the crystals.
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Figure S2. Comparison between the EPR spectra of Go.BPDS-2(TEMPO) (at 20 GHz), G.BPDS-2(MeO-TEMPO) (at
20 GHz), and G>,ABDS-/2(TEMPO)-"2(MeOH) (at 25 GHz) taken with the applied magnetic field (H) parallel to the
longest physical dimension of the crystals (on the left panel) and those taken with H perpendicular to the longest
physical dimension of the crystals (on the right panel). In all cases, the difference in the calculated g value is less

than 1%.
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Figure S3. (A) Xmo of G2 ABDS-2(MeO-TEMPO)-2(MeOH) with H = 1000 Oe applied parallel to the longest physical
dimension of the crystal. The red data points (¢, ¢) are collected in a heating cycle from 2 K to 300 K, whereas the
blue data points (m, 0) are collected in a cooling cycle from 300 K to 2 K. The inset panel depicts a blowup between T
=2 K and 20 K and the Curie-Weiss (solid curve) fit to the data. (B) Dependence of 1/xmo on temperature. The Curie-
Weiss fit (solid line) and extrapolation to T = 0 K are shown in the inset. (C) Dependence of xma T (analogous to uef)
on temperature. The susceptibility data have been corrected using Pascal’s constants to account for the contribution
from the diamagnetic components of the inclusion compound.
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Figure S4. (A) Xma of GoBPDS-2(MeO-TEMPO) with H = 1000 Oe applied parallel to the longest physical dimension
of the crystal. The red data points (¢, 0) are collected in a heating cycle from 2 K to 300 K, whereas the blue data
points (m, 0) are collected in a cooling cycle from 300 K to 2 K. The inset panel depicts a blowup between T =2 K
and 20 K and the Curie-Weiss (solid curve) fit to the data. (B) Dependence of 1/xmo On temperature. The Curie-Weiss
fit (solid line) and extrapolation to T = 0 K are shown in the inset. (C) Dependence of xmaT (analogous to perr) on
temperature. The susceptibility data have been corrected using Pascal’'s constants to account for the contribution
from the diamagnetic components of the inclusion compound.
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Figure S5. (A) Xmo of G2BPDS:(0oxo-TEMPO)-(MeOH):(H20) with H = 1000 Oe applied parallel to the longest physical
dimension of the crystal. The red data points (¢, ¢) are collected in a heating cycle from 2 K to 300 K, whereas the
blue data points (m, 0) are collected in a cooling cycle from 300 K to 2 K. The inset panel depicts a blowup between T
=2 K and 20 K and the Curie-Weiss (solid curve) fit to the data. (B) Dependence of 1/xmo on temperature. The Curie-
Weiss fit (solid line) and extrapolation to T = 0 K are shown in the inset. (C) Dependence of xma T (analogous to uef)
on temperature. The susceptibility data have been corrected using Pascal’s constants to account for the contribution
from the diamagnetic components of the inclusion compound.
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Figure S6. (A) Xmo of TEMPO with H = 1000 Oe. The red data points (#) are collected in a heating cycle from 2 K to
300 K, whereas the blue data points (m) are collected in a cooling cycle from 300 K to 2 K. The inset panel depicts a
blowup between T =2 K and 20 K. (B) Dependence of 1/xmo on temperature. (C) Dependence of xmo T (analogous to

Uef) on temperature. The susceptibility data have been corrected using Pascal's constants to account for the
contribution from the diamagnetic components.
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Figure S7. (A) xmo of MeO-TEMPO with H = 1000 Oe. The red data points () are collected in a heating cycle from 2

K to 300 K, whereas the blue data points (m) are collected in a cooling cycle from 300 K to 2 K. The inset panel
depicts a blowup between T = 2 K and 20 K. (B) Dependence of 1/xma On temperature. (C) Dependence of xmoT
(analogous to per) on temperature. The susceptibility data have been corrected using Pascal’s constants to account
for the contribution from the diamagnetic components.
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Figure S8. (A) xmo of 0xo-TEMPO with H = 1000 Oe. The red data points () are collected in a heating cycle from 2

K to 300 K, whereas the blue data points (m) are collected in a cooling cycle from 300 K to 2 K. The inset panel
depicts a blowup between T = 2 K and 20 K. (B) Dependence of 1/xma On temperature. (C) Dependence of xmoT
(analogous to per) on temperature. The susceptibility data have been corrected using Pascal’s constants to account
for the contribution from the diamagnetic components.
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Figure S9. Poor correlation between the experimental xmo data of GoBPDS-2(TEMPQO) and the calculated xmol
obtained from the 1-D chain Bonner-Fisher, Hatfield, and Pade models.
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Figure $10. Poor correlation between the experimental xmo data of GoNDS-2(TEMPO) and the calculated xmol
obtained from the 2-D square-planar model.
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Figure S11. Dependence of Mmoar on H at T = 2 K (blue line) and T = 10 K (red line) for
G,ABDS 2(TEMPO)-/2(MeOH). Note that 1 Oe = 1000/4z A/m. The field H is applied parallel to the longest physical
dimension of the crystal. The magnetization data have been corrected to account for the contribution from the
diamagnetic components of the inclusion compounds.
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Figure S12. Dependence of Mmoar on H at T = 2 K (blue line) and T = 10 K (red line) for G, ABDS-2(MeO-
TEMPO)-2(MeOH). Note that 1 Oe = 1000/4z A/m. The field H is applied parallel to the longest physical dimension of
the crystal. The magnetization data have been corrected to account for the contribution from the diamagnetic
components of the inclusion compounds.

Regulating Low-Dimensional Magnetic Behavior of Organic Radicals in Crystalline Hydrogen-Bonded Host Frameworks

S11



Supplementary Material (ESI) for Journal of Materials Chemistry
This journal is (c) The Royal Society of Chemistry 2011

5 - - . .

— 2K
— 10K

M. o1ar (A-m2/mol)

H (108 A/m)
Figure S13. Dependence of Mmoar on H at T = 2 K (blue line) and T = 10 K (red line) for G,BPDS-2(MeO-TEMPO).
Note that 1 Oe = 1000/4x A/m. The field H is applied parallel to the longest physical dimension of the crystal. The
magnetization data have been corrected to account for the contribution from the diamagnetic components of the
inclusion compounds.
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Figure S14. Dependence of Myoar on H at T = 2 K (blue line) and T = 10 K (red line) for G.BPDS-(oxo-
TEMPO)-(MeOH)-(H20). Note that 1 Oe = 1000/4z A/m. The field H is applied parallel to the longest physical
dimension of the crystal. The magnetization data have been corrected to account for the contribution from the
diamagnetic components of the inclusion compounds.
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Figure S15. Dependence of Mmoar on H at T = 2 K (blue line) and T = 10 K (red line) for TEMPO. Note that 1 Oe =
1000/4z A/m. The magnetization data have been corrected to account for the contribution from the diamagnetic
components.
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Figure S16. Dependence of Mnoar on H at T = 2 K (blue line) and T = 10 K (red line) for MeO-TEMPO. Note that 1
Oe = 1000/4z A/m. The magnetization data have been corrected to account for the contribution from the diamagnetic
components.
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Figure S17. Dependence of Mnoar on H at T =2 K (blue line) and T = 10 K (red line) for oxo-TEMPO. Note that 1 Oe
= 1000/4zr A/m. The magnetization data have been corrected to account for the contribution from the diamagnetic
components.
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