Preparation of White Light Emitting YVO₄: Ln³⁺ and Silica-coated YVO₄: Ln³⁺
(Ln³⁺ = Eu³⁺, Dy³⁺, Tm³⁺) Nanoparticles by CTAB/n-butanol/hexane/water
Microemulsion Route: Energy Transfer and Site Symmetry Studies

Meitram Niraj Luwanga, Raghumani Singh Ningthoujam, Sri Krishna Srivastava, Rajesh Kumar Vatsa

a Department of Chemistry, Manipur University, Imphal-795003, India.
b Chemistry Division, Bhabha Atomic Research Center, Mumbai-400085, India.

*Corresponding author: rsn@barc.gov.in
Table S1. V-O charge transfer in the excitation spectra of YVO$_4$:Ln$^{3+}$ and YVO$_4$:Ln$^{3+}$@SiO$_2$ (Ln$^{3+}$ = Eu$^{3+}$, Tm$^{3+}$ and Dy$^{3+}$) at different annealing temperatures.

Table S2. Integrated Area and Full width half maximum (FWHM) of the electric and magnetic dipole transition of the emission spectra of Ln$^{3+}$:YVO$_4$ and Ln$^{3+}$:YVO$_4$@SiO$_2$ (Ln$^{3+}$ = Eu$^{3+}$, Tm$^{3+}$ and Dy$^{3+}$) at different annealing temperatures.

Table S3. Lifetime values (mono-exponential fitting) for Ln$^{3+}$ (Ln$^{3+}$ = Eu$^{3+}$, Tm$^{3+}$ and Dy$^{3+}$) in YVO$_4$:Ln$^{3+}$ and YVO$_4$:Ln$^{3+}$@SiO$_2$ at different annealing temperatures.

Fig. S1 XRD patterns of YVO$_4$:Ln$^{3+}$ (Ln$^{3+}$ = Eu$^{3+}$, Dy$^{3+}$, Tm$^{3+}$) at different annealing temperatures (500 and 900 °C).

Fig. S2 XRD patterns of YVO$_4$:Ln$^{3+}$@SiO$_2$ (Ln$^{3+}$ = Eu$^{3+}$, Dy$^{3+}$, Tm$^{3+}$) at different annealing temperatures (500, 700 and 900 °C).

Fig. S3 TGA curve of as-prepared YVO$_4$ collected from CTAB/n-butanol/hexane/water microemulsion.

Fig. S4 TEM images of YVO$_4$:Tm$^{3+}$@SiO$_2$ annealed at (a) 500 and (b) 900°C. Inset of (b) shows the SAED (Upper) and HRTEM (Lower).

Fig. S5 Luminescence decay of YVO$_4$:Ln$^{3+}$ (Ln$^{3+}$ = Eu$^{3+}$, Dy$^{3+}$ and Tm$^{3+}$) at different annealing temperatures (500 and 900 °C).

Fig. S6 Luminescence decay of YVO$_4$:Ln$^{3+}$@SiO$_2$ (Ln$^{3+}$ = Eu$^{3+}$, Dy$^{3+}$ or Tm$^{3+}$) at different annealing temperatures (500 and 900 °C).

Fig. S7 Luminescence decay of YVO$_4$:Ln$^{3+}$@SiO$_2$ (Ln$^{3+}$ = Eu$^{3+}$, Dy$^{3+}$ and Tm$^{3+}$) at different annealing temperatures (500 and 900 °C).
Table S1. V-O charge transfer in the excitation spectra of YVO₄:Ln³⁺ and YVO₄:Ln³⁺@SiO₂ (Ln³⁺ = Eu³⁺, Tm³⁺ and Dy³⁺) at different annealing temperatures.

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Sample</th>
<th>V-O Charge transfer (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Eu:YVO₄ – 500 °C</td>
<td>300</td>
</tr>
<tr>
<td>2</td>
<td>Eu:YVO₄ – 900 °C</td>
<td>318</td>
</tr>
<tr>
<td>3</td>
<td>Eu:YVO₄@SiO₂ – 500 °C</td>
<td>290</td>
</tr>
<tr>
<td>4</td>
<td>Eu:YVO₄@SiO₂ – 900 °C</td>
<td>307</td>
</tr>
<tr>
<td>5</td>
<td>Dy:YVO₄ – 500 °C</td>
<td>300</td>
</tr>
<tr>
<td>6</td>
<td>Dy:YVO₄ – 900 °C</td>
<td>320</td>
</tr>
<tr>
<td>7</td>
<td>Dy:YVO₄@SiO₂ – 500 °C</td>
<td>300</td>
</tr>
<tr>
<td>8</td>
<td>Dy:YVO₄@SiO₂ – 900 °C</td>
<td>306</td>
</tr>
<tr>
<td>9</td>
<td>Tm:YVO₄ – 500 °C</td>
<td>303</td>
</tr>
<tr>
<td>10</td>
<td>Tm:YVO₄ – 900 °C</td>
<td>320</td>
</tr>
<tr>
<td>11</td>
<td>Tm:YVO₄@SiO₂ – 500 °C</td>
<td>295</td>
</tr>
<tr>
<td>12</td>
<td>Tm:YVO₄@SiO₂ – 900 °C</td>
<td>310</td>
</tr>
<tr>
<td>Sl. No.</td>
<td>Sample</td>
<td>Electric dipole transition</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integrated area (nm)</td>
</tr>
<tr>
<td>1</td>
<td>Eu:YVO$_4$ – 500 °C</td>
<td>2.3 x 104</td>
</tr>
<tr>
<td>2</td>
<td>Eu:YVO$_4$ – 900 °C</td>
<td>4.4 x 105</td>
</tr>
<tr>
<td>3</td>
<td>Eu:YVO$_4$ @SiO$_2$ – 500 °C</td>
<td>3.5 x 105</td>
</tr>
<tr>
<td>4</td>
<td>Eu:YVO$_4$ @SiO$_2$ – 900 °C</td>
<td>1.6 x 107</td>
</tr>
<tr>
<td>5</td>
<td>Dy:YVO$_4$ – 500 °C</td>
<td>1.6 x 105</td>
</tr>
<tr>
<td>6</td>
<td>Dy:YVO$_4$ – 900 °C</td>
<td>3.9 x 105</td>
</tr>
<tr>
<td>7</td>
<td>Dy:YVO$_4$ @SiO$_2$ – 500 °C</td>
<td>2.2 x 103</td>
</tr>
<tr>
<td>8</td>
<td>Dy:YVO$_4$ @SiO$_2$ – 900 °C</td>
<td>1.3 x 106</td>
</tr>
<tr>
<td>9</td>
<td>Tm:YVO$_4$ – 500 °C</td>
<td>1.1 x 104</td>
</tr>
<tr>
<td>10</td>
<td>Tm:YVO$_4$ – 900 °C</td>
<td>2.5 x 105</td>
</tr>
<tr>
<td>11</td>
<td>Tm:YVO$_4$ @SiO$_2$ – 500 °C</td>
<td>1.9 x 104</td>
</tr>
<tr>
<td>12</td>
<td>Tm:YVO$_4$ @SiO$_2$ – 900 °C</td>
<td>6.3 x 105</td>
</tr>
</tbody>
</table>
Table S3. Lifetime values obtained after the mono-exponential fitting to the data of YVO₄:Ln³⁺ and YVO₄:Ln³⁺@SiO₂ (Ln³⁺ = Eu³⁺, Tm³⁺ and Dy³⁺) at different annealing temperatures.

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Sample</th>
<th>Lifetime, τ (µs)</th>
<th>R² (Goodness of parameter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Tm:YVO₄ – 500 °C</td>
<td>13.3</td>
<td>0.997</td>
</tr>
<tr>
<td>2.</td>
<td>Tm:YVO₄ – 900 °C</td>
<td>16.3</td>
<td>0.991</td>
</tr>
<tr>
<td>3.</td>
<td>Eu:YVO₄ – 500 °C</td>
<td>149.9</td>
<td>0.974</td>
</tr>
<tr>
<td>4.</td>
<td>Eu:YVO₄ – 900 °C</td>
<td>475.4</td>
<td>0.998</td>
</tr>
<tr>
<td>5.</td>
<td>Dy:YVO₄ – 500 °C</td>
<td>84.6</td>
<td>0.987</td>
</tr>
<tr>
<td>6.</td>
<td>Dy:YVO₄ – 900 °C</td>
<td>109.1</td>
<td>0.999</td>
</tr>
<tr>
<td>7.</td>
<td>Tm:Eu:Dy:YVO₄ – 500 °C (Tm)</td>
<td>2.5</td>
<td>0.974</td>
</tr>
<tr>
<td>8.</td>
<td>Tm:Eu:Dy:YVO₄ – 500 °C (Eu)</td>
<td>16.8</td>
<td>0.996</td>
</tr>
<tr>
<td>9.</td>
<td>Tm:Eu:Dy:YVO₄ – 500 °C (Dy)</td>
<td>4.9</td>
<td>0.979</td>
</tr>
<tr>
<td>10.</td>
<td>Tm:Eu:Dy:YVO₄ – 900 °C (Tm)</td>
<td>4.1</td>
<td>0.977</td>
</tr>
<tr>
<td>11.</td>
<td>Tm:Eu:Dy:YVO₄ – 900 °C (Eu)</td>
<td>24.4</td>
<td>0.991</td>
</tr>
<tr>
<td>12.</td>
<td>Tm:Eu:Dy:YVO₄ – 900 °C (Dy)</td>
<td>11.7</td>
<td>0.961</td>
</tr>
<tr>
<td>13.</td>
<td>Tm:YVO₄@SiO₂ – 500 °C</td>
<td>5.4</td>
<td>0.969</td>
</tr>
<tr>
<td>14.</td>
<td>Tm:YVO₄@SiO₂ – 900 °C</td>
<td>21.1</td>
<td>0.998</td>
</tr>
<tr>
<td>15.</td>
<td>Eu:YVO₄@SiO₂ – 500 °C</td>
<td>264.9</td>
<td>0.973</td>
</tr>
<tr>
<td>16.</td>
<td>Eu:YVO₄@SiO₂ – 900 °C</td>
<td>629.5</td>
<td>0.998</td>
</tr>
<tr>
<td>17.</td>
<td>Dy:YVO₄@SiO₂ – 500 °C</td>
<td>36.1</td>
<td>0.924</td>
</tr>
<tr>
<td>18.</td>
<td>Dy:YVO₄@SiO₂ – 900 °C</td>
<td>210.9</td>
<td>0.996</td>
</tr>
<tr>
<td>19.</td>
<td>Tm:Eu:Dy:YVO₄@SiO₂ – 500 °C (Tm)</td>
<td>1.9</td>
<td>0.969</td>
</tr>
<tr>
<td>20.</td>
<td>Tm:Eu:Dy:YVO₄@SiO₂ – 500 °C (Eu)</td>
<td>12.4</td>
<td>0.993</td>
</tr>
<tr>
<td>21.</td>
<td>Tm:Eu:Dy:YVO₄@SiO₂ – 500 °C (Dy)</td>
<td>4.5</td>
<td>0.979</td>
</tr>
<tr>
<td>22.</td>
<td>Tm:Eu:Dy:YVO₄@SiO₂ – 900 °C (Tm)</td>
<td>4.5</td>
<td>0.962</td>
</tr>
<tr>
<td>23.</td>
<td>Tm:Eu:Dy:YVO₄@SiO₂ – 900 °C (Eu)</td>
<td>25.6</td>
<td>0.991</td>
</tr>
<tr>
<td>24.</td>
<td>Tm:Eu:Dy:YVO₄@SiO₂ – 900 °C (Dy)</td>
<td>11.9</td>
<td>0.959</td>
</tr>
</tbody>
</table>
Fig. S1 XRD patterns of YVO$_4$:Ln$^{3+}$ ($\text{Ln}^{3+} = \text{Eu}^{3+}$, Dy$^{3+}$, Tm$^{3+}$) at different annealing temperatures (500 and 900 °C).
Fig. S2 XRD patterns of YVO₄:Ln³⁺@SiO₂ (Ln³⁺ = Eu³⁺, Dy³⁺, Tm³⁺) at different annealing temperatures (500, 700 and 900 °C).
Fig. S3 TGA curve of as-prepared YVO₄ collected from CTAB/n-butanol/hexane/water microemulsion.
Fig. S4 TEM images of YVO₄:Tm³⁺@SiO₂ annealed at (a) 500 and (b) 900°C. Inset of (b) shows the SAED (Upper) and HRTEM (Lower).
Fig. S5 Luminescence decay of YVO₄:Ln³⁺ (Ln³⁺ = Eu³⁺, Dy³⁺ and Tm³⁺) at different annealing temperatures (500 and 900 °C).
Fig. S6 Luminescence decay of YVO₄:Ln³⁺@SiO₂ (Ln³⁺ = Eu³⁺, Dy³⁺ or Tm³⁺) at different annealing temperatures (500 and 900 °C).
Fig. S7 Luminescence decay of YVO₄:Ln³⁺@SiO₂ (Ln³⁺ = Eu³⁺, Dy³⁺ and Tm³⁺) at different annealing temperatures (500 and 900 °C).