Phosphine-Free Synthesis of $\text{Zn}_{1-x}\text{Cd}_x\text{Se}$ / $\text{ZnSe} / \text{ZnSe}_x\text{S}_{1-x}$ /ZnS Core/Multishell Structures with Bright and Stable Blue–Green Photoluminescence

Huaibin Shen1,3, Changhua Zhou1, ShaSha Xu1, Cailan Yu2, Hongzhe Wang1, Xia Chen3*, and Lin Song Li1*

1Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng, 475004, P. R. China

2Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, 100080, P. R. China

3College of Life Science, Jilin University, Changchun, 130021, P. R. China

E-mail: lsli@henu.edu.cn, bbbbz@163.com.
Figure S1. TEM images of a series of ~3.5 nm Zn$_{1-x}$Cd$_x$Se nanocrystals, which correspond with Figure 1.
Figure S2. Powder XRD patterns of the Zn$_x$Cd$_{1-x}$Se samples with different molar ratios of Zn and Cd.
Figure S3. Evolution of the PL-peak position (black) and QYs (green) for core-shell nanocrystals.

Figure S4. A photo of purified powder Zn$_{1-x}$Cd$_x$Se/ZnSe/ZnSe$_{x}$S$_{1-x}$/ZnS core-shell nanocrystals sample (~ 10 g).
Figure S5. The corresponding size-distribution histograms of Figure 5.

Figure S6. High resolution TEM images of Figure 5.
Figure S7. EDX spectra of A) Zn$_{0.94}$Cd$_{0.06}$Se, B) Zn$_{0.94}$Cd$_{0.06}$Se/ZnSe, C) Zn$_{0.94}$Cd$_{0.06}$Se/ZnSe$_x$S$_{1-x}$, D) Zn$_{0.94}$Cd$_{0.06}$Se/ZnSe$_x$/Zn$_x$S$_{1-x}$/ZnS nanocrystals.

Figure S8. The corresponding size-distribution histogram of Figure 7.