Supporting Information

Mesoporous Hollow TiO$_2$ Microspheres with Enhanced Photoluminescence

Prepared by Smart Template of Amino Acid

Shangjun Ding,a Fuqiang Huang,*a Xinliang Mou,b Jianjun Wu,a and Xujie Lüa

a CAS Key Laboratory of Materials for Energy Conversion,
Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS),
Shanghai 200050, P. R. China (P.R.C).
Fax: +86 21 5241 6360, e-mail: huangfq@mail.sic.ac.cn

b Inorganic Materials Analysis and Testing Center, SICCAS,
Shanghai 200050, P.R.C.

Fig. S1 The XRD pattern (a) and SEM morphology (b) of TiO$_2$ obtained with n-octane as solvent.
Fig. S2 The SEM images of TiO$_2$ microspheres obtained with n-butanol (a) and isopropanol (b) as solvent.

Fig. S3 The typical TEM images (a-b), XRD pattern (c) and EDS spectrum (d) of the Eu-doped TiO$_2$ hollow spheres.
Fig. S4 The SEM morphology (a), TEM image (a, inset) and XRD pattern (b) of the Eu-doped TiO$_2$ sample prepared by conventional hydrothermal method.

![SEM morphology](image), ![TEM image](image), ![XRD pattern](image)

Table S1. Preparation conditions of different Eu-doped TiO$_2$ sample.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Reagents</th>
<th>Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hollow sphere</td>
<td>30mL EtOH + 1mL TNB + 0.06g Eu(NO$_3$)$_3$ + 0.8g glycine</td>
<td>200°C(20h) in autoclave and 450°C(5h) for heat treatment</td>
</tr>
<tr>
<td>Nanoparticle</td>
<td>30mL EtOH + 1mL TNB + 0.06g Eu(NO$_3$)$_3$ + 2mL H$_2$O</td>
<td></td>
</tr>
</tbody>
</table>