TiO$_2$(B)@Carbon Composite Nanowires as Anode for Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance

Zunxian Yang, 1* Guodong Du, 2 Zaiping Guo, 2,3* Xuebin Yu, 4* Zhixin Chen, 3 Tailiang Guo, 1 Huakun Liu 2

1Engineering Research Center for Field Emission Display Technology of Ministry of Education, Fuzhou University, Fuzhou 350002, P. R. China
2Institute for Superconducting & Electronic Materials, University of Wollongong, NSW 2522, Australia
3School of Mechanical, Materials & Mechatronics Engineering, University of Wollongong, NSW 2522, Australia
4Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
Fig. S1 TGA/DSC curves of TiO$_2$(B)@Carbon composite nanowires.

Fig. S2 EDX spectrum of TiO$_2$(B)@Carbon composite nanowires and corresponding content table for the sample (inset).
Scheme S1 Charge diffusion and conducting mechanism of
TiO$_2$(B)@Carbon composite nanowires during charge/discharge processes.
The inset shows a high resolution TEM image of TiO$_2$(B)@Carbon composite nanowire.

Fig. S3 Capacity–cycle number curves from the first cycle to the 100th cycle of anatase TiO$_2$(B)@C nanowires between 1.0 and 3.0 V vs. Li$^+/Li$ at the current density of 30 mAg$^{-1}$.
Fig. S4 Voltage profiles for selected cycles of glucose-hydrothermal derived carbon electrode between 0.01 and 3.0 V vs. Li⁺/Li at the current density of 30 mAg⁻¹.