Supplementary Information: Journal of Materials Chemistry

Novel Li$_2$FeSiO$_4$/C Composite: Synthesis, Characterization and High Storage Capacity

Dongping Lv,a Wen Wen,b Xingkang Huang,a Jingyu Bai,a Jinxiao Mi,c

Shunqing Wud and Yong Yanga,*

aState Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Department of Chemistry, Xiamen University, Xiamen, 361005 (P. R.China)
E-mail: yyang@xmu.edu.cn, Tel: +86-592-218-5753

bShanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai, 201204 China

cDepartment of Materials Science and Engineering, College of Materials, Xiamen University, China

dDepartment of Physics, School of Physics and Mechanical and Electrical Engineering, Xiamen University, China
Figure S1. Schematic illustration of the synthesis procedure.
The decomposition process of the precursor (namely the as-obtained xerogel) was studied by TG-MS as shown in Fig. S2. TG curve, corroborated by MS analysis, can be divided into three regions i.e., from room temperature to 150 °C, 150-500 °C, and 500-800 °C (labeled as R1, R2, and R3, respectively). In region R1, the weight loss of 5 wt% below 150 °C is related to the dehydration of physically adsorbed water in precursor. In region R2, there is a significant weight loss of 65 wt%, which were ascribed to the decomposition processes of organic groups from acetate ion or citric acid, proved by the coupled MS analysis (Fig. S2 d). In a high temperature range of R3, a large endothermic peak was observed at around 590 °C without obvious weight loss (Fig. S2b), which corresponded to the crystallization of Li$_2$FeSiO$_4$; the slight release of CO at 790 °C (Fig. 2c) may relate to the reaction between the Li$_2$FeSiO$_4$ and its compact carbon coating layer.
Based on the analysis of TG-MS, we can choose the precalcination (ca. 400 °C) and calcination (ca. 600 °C) temperatures efficiently in our synthesis process. Herein, we selected 400 °C in stead of 500 °C as the precalcination temperature because a slower heating rate of 2 °C min\(^{-1}\) was adopted in our material synthesis process compared to that of 10 °C min\(^{-1}\) in TG-MS experiment. In fact, a slower heating rate is known to lead to an apparent shift of the decomposition steps to a lower temperature.