Supporting Information for

A new strategy for finely controlling the metal (oxide) coating on colloidal particles with tunable catalytic properties

Jun Ming,abc Haiyang Cheng,ab Yancun Yu,ab Yingqiang Wu,abc and Fengyu Zhao *ab

aState Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
bLaboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
cUniversity of the Chinese Academy of Sciences, Beijing 100049, P. R. China.

*Corresponding author. Tel.: +86-0431-58262410. Fax: +86-0431-58262410. E-mail: zhaofy@ciac.jl.cn
Figure S1. A viewable process of coating the core particles with a uniform layer of metal-salt from precursors in CO$_2$ expanded fluid. (a-e) The colloidal ethanol solution of precursors (e.g., Ni(NO$_3$)$_2$•6H$_2$O) was expanded by CO$_2$ and formed a homogeneous fluid under rapid stirring at 150 °C. (e') The carbon colloids in fluid would precipitate immediately if stopped stirring, therefore the stirring is very important for a uniform coating and avoiding the formation of independent metal-salt. (f) The metal-salt were formed at 200 °C and deposited on the surface of suspended carbon colloids. (f') The phase states of (f) after the stirring was stopped. The transparent solution indicates all the precursors converted into metal-salt completely, and the clear viewable window demonstrates the formed metal-salt were all coated on carbon colloids instead of independent Ni-salt formed and attached on window.
Figure S2. FESEM images of particles coated with a layer of solid-shell. (a) C@Ni-salt (0.02 M). (b) C@Co-salt (0.01 M).
Figure S3. (a) EDXA spectra of the C@Ni&Co particles. The molar ratio of Ni to Co is 1.97:1. (b) EDXA spectra of the C@Ni&Pd particles. The molar ratio of Ni to Pd is 19:1.