Cyan-Emitting Ti⁴⁺- and Mn²⁺-Coactivated Mg₂SnO₄ as a Potential Phosphor to Enlarge Color Gamut for Field Emission Display

Guogang Li,^a Xiao Zhang,^b Chong Peng,^a Mengmeng Shang,^a Dongling Geng,^a Ziyong Cheng^a and Jun Lin^{*, a}

^{*a*} State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.

^b College of Materials Science and Chemical Engineering, Harbin Engineering UniversityHarbin, 150001 (P. R. China).

* Corresponding author. Electronic mail: jlin@ciac.jl.cn

Experimental Section:

Preparation. The Mg₂SnO₄: x mol% Ti⁴⁺, y mol% Mn²⁺ powder samples were prepared by conventional solid state reaction. The doping concentrations of Ti⁴⁺ and Mn^{2+} were chosen as 0.1–5 mol% of Sn⁴⁺ and 0.01–1 mol% of Mn²⁺ in Mg₂SnO₄, respectively. Typically, stoichiometric amounts of MgO, SnO₂, TiO₂, and MnCO₃ were thoroughly mixed with an appropriate amount of ethanol in an agate mortar and then dried at 90 °C for 2 h. The powder mixtures were sintered at 1200 °C for 4 h in air to produce the final samples. All chemicals are of analytical degree.

Characterization. The X-ray diffraction (XRD) measurements were carried out on a D8 Focus diffractometer using Cu K α radiation ($\lambda = 0.15405$ nm). The PL measurements were performed on a Hitachi F-4500 spectrophotometer equipped with a 150 W xenon lamp as the excitation source. The CL measurements were carried out in an ultra-highvacuum chamber ($<10^{-8}$ Torr), where the phosphors were excited by an electron beam in the voltage range of 0.5–5.0 kV and different anode current density, and the emission spectra were recorded using an F-7000 spectrophotometer. Photoluminescence quantum yield (QY) was measured by absolute PL quantum yield measurement system C9920-02. The PL lifetimes of the samples were measured with a Lecroy Wave Runner 6100 Digital Oscilloscope (1GHz) using a tunable laser (pulse width 4 ns) as the excitation source (Continuum Sunlite OPO). All the measurements were performed at room temperature (RT).

	CN = 4		CN = 6		
Ion	Crystal radius	Effective ionic	Crystal radius	Effective ionic	
	(CR) (Å)	radius (IR) (Å)	(CR) (Å)	radius (IR) (Å)	
Mg ²⁺	0.71	0.57	0.86	0.72	
Mn^{2+}	0.80	0.66	0.81	0.67	
Sn^{4+}	_	—	0.83	0.69	
${\rm Ti}^{4+}$	_	_	0.745	0.605	

Table 1. Ionic radii (Å) and their coordination number (CN) of Mg^{2+} , Mn^{2+} , Sn^{4+} and Ti^{4+} .

Table 2. The CIE chromaticity coordinates, emission colors of $Mg_{2(1-y)}Sn_{(1-x)}O_4$: x mol% Ti⁴⁺, y mol% Mn²⁺ (x = 0-3, y = 0-0.1) samples under the $V_a = 3.0$ kV, $J_a = 50$ μ A/cm² electron beam excitation, and their quantum yields under $\lambda_{ex} = 244$ nm UV light excitation.

Sample	Mg _{2(1-y)} Sn _(1-x) O ₄ : x mol%	Quantum	CIE chromaticity	Color
_	Ti ⁴⁺ , y mol% Mn ²⁺	yield (%)	coordinates (X, Y)	
S 1	x = 0, y = 0	_	(0.1780, 0.2449)	blue
S2	x = 2.0, y = 0	35	(0.1773, 0.2186)	blue
S3	x = 0, y = 0.1	4	(0.0908, 0.5668)	green
S4	x = 0.5, y = 0.01	17	(0.1512, 0.2717)	cyan
S5	x = 0.5, y = 0.025	18	(0.1464, 0.2871)	cyan
S6	x = 0.5, y = 0.05	13	(0.1409, 0.3185)	cyan
S 7	x = 2.0, y = 0.01	23	(0.1637, 0.2574)	cyan
S 8	x = 2.0, y = 0.025	22	(0.1647, 0.2819)	cyan
S9	x = 3.0, y = 0.01	19	(0.1676, 0.2397)	cyan

Supplementary Material (ESI) for Journal of Materials Chemistry # This journal is (c) The Royal Society of Chemistry 2011

Fig. S1 The XRD patterns of (a) Mg_2SnO_4 , (b) Mg_2SnO_4 :2 mol% Ti⁴⁺, (c) $Mg_2SnO_4:0.1 mol\% Mn^{2+}$, (d) $Mg_2SnO_4:2 mol\% Ti^{4+}$, 0.1 mol% Mn^{2+} samples calcined at 1200 °C for 4 h and the standard data for Mg₂SnO₄ (JCPDS No. 24-0723) as reference. (e)-(h) are the schematic drawing of the crystal structure of Mg₂SnO₄.

Supplementary Material (ESI) for Journal of Materials Chemistry

This journal is (c) The Royal Society of Chemistry 2011

Fig. S2 The photoluminescence lifetime of Ti^{4+} and Mn^{2+} ions in the Mg₂SnO₄:2 mol% Ti^{4+} and Mg₂SnO₄:0.1 mol% Mn^{2+} samples, respectively.

Supplementary Material (ESI) for Journal of Materials Chemistry

This journal is (c) The Royal Society of Chemistry 2011

Figure S3. The CL spectra of Mg₂SnO₄: 0.5 mol% Ti⁴⁺, 0.025 mol% Mn²⁺ sample $(V_a = 3.0 \text{ kV}, J_a = 50 \text{ }\mu\text{A/cm}^2)$, and I_a denotes the initial intensity for 0 h, and I_b denotes the intensity after continuous electron beam excitation for 1 h and the inset are their corresponding CIE chromaticity coordinates. I_b/I_a = 0.92.

Supplementary Material (ESI) for Journal of Materials Chemistry

This journal is (c) The Royal Society of Chemistry 2011

Fig. S4 The CL intensity of the representative Mg_2SnO_4 : 5 mol% Ti⁴⁺, 0.025 mol% Mn^{2+} sample as a function of (a) anode current density (J_a) and (b) accelerating voltage (V_a).