Supporting Information

Interpenetrating polymer network dielectrics for high-performance organic field-effect transistors

Hwa Sung Lee¹†, Kyungmin Park²†, Jong-Dae Kim³, Taehwan Han², Kwang Hee Ryu², Ho Sun Lim⁴, Dong Ryeol Lee³, Young-Je Kwark*², Jeong Ho Cho*²

¹Department of Chemical Engineering, Hanbat National University, 16-1, Dukmyung-dong, Yuseong-gu, Daejeon 305-719, Republic of Korea.
²Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul 156-743, Republic of Korea.
³Department of Physics, Soongsil University, Seoul 156-743, Republic of Korea.
⁴Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
†H. S. Lee and K. Park contributed equally to this work.

Figure S1. DSC thermograms of the PMMA, PMMA90/PhSSQZ10, PMMA80/PhSSQZ20, and PMMA70/PhSSQZ30

Figure S2. Current density-electric field (J vs. E) characteristics of the PMMA-q annealed at different conditions.
Figure S3. Output characteristics of OFETs based on the IPN gate dielectrics. The gate voltage was varied between 0 and -40 V in steps of -10 V.

Figure S4. Output and transfer characteristics of OFETs based on the 78.3 nm-thick PMMA-q gate dielectrics; drain current (closed circle) and gate current (open circle).

Figure S5. AFM topography of the 50 nm-thick pentacene films deposited on the pristine gate dielectrics (PMMA, PtBMA, and PS).