Supporting Information for the manuscript

A facile and green approach to synthesize Pt@CeO$_2$ nanocomposite with tunable core-shell and yolk-shell structure and its application as a visible light photocatalyst

Nan Zhang, Xianzhi Fu, and Yi-Jun Xu*

State Key Laboratory Breeding Base of Photocatalysis, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002, P.R. China

*To whom correspondence should be addressed. E-mail: yjxu@fzu.edu.cn

Method for calculation procedures for energy position of conduction band edge (E_C) and valence band edge (E_V) of semiconductors

The calculation can be described as the following steps.

1. Calculate electronegativity of the elements $^{[S1]}$

\[\chi = \frac{I + A}{2} \]

where χ is electronegativity; I is ionization energy and A is electron affinity.

2. Calculate electronegativity of the compound $^{[S2,S3]}$

\[\chi_{oxide} = \left[(\chi_M)^m (\chi_O)^n \right]^{1/(m+n)} \]

3. Calculate the E_g (band gap) from DRS (UV-visible diffuse reflectance spectra) result $^{[S4]}$

\[E_g = \frac{1240}{\lambda} \]

4. Determine E_C and E_V $^{[S5]}$

 vs. AVS (the absolute vacuum scale)

\[E_C = -\chi + 0.5E_g \]
\[E_V = -\chi - 0.5E_g \]

 vs. SHE (standard hydrogen electrode)

\[E_C = -\chi + 0.5E_g - 4.5 \]
\[E_V = -\chi - 0.5E_g - 4.5 \]

Fig. S1 The result of EDS for the core-shell Pt@CeO$_2$ nanoparticles (note: the signals of Cu and Zn resulted from the sample holder).

Fig. S2 HRTEM and SAED images of the yolk-shell Pt@CeO$_2$ nanocomposite.
Fig. S3 TEM and EDS results of the as-synthesized yolk-shell Pt@CeO$_2$ nanocomposite (note: the singal of Cu resulted from the sample holder).

Fig. S4 Photograph (A) and TEM image (B) of the original Pt colloid nanoparticles.