Improvement of the catalytic activity of PtRu bimetallic nanoparticles by a plasma treatment in their application of the ethanol electrooxidation

Jie Liu,a Zhongqing Jiang,*a,b Zhong-jie Jiang,*c and Yuedong Menga

a Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, Anhui, China.
b Department of Chemical Engineering, Ningbo University of Technology, Ningbo 315016, Zhejiang, China.
c Department of Nature and Sciences, University of California, Merced 95348, USA.

*Corresponding author: Zhongqing Jiang and Zhong-jie Jiang, Fax: +86-551-5591310; Tel: +86-551-5591605; Email: zhongqingjiang@hotmail.com, zhongjiejiang1978@hotmail.com

Supporting Information

1. Experimental section

Materials Formaldehyde (HCHO, 37–40 wt%), hexachloroplatinic(IV) acid (H₂PtCl₆, AR), ruthenium (III) chloride (RuCl₃, GR), sodium hydroxide (NaOH, AR), ethanol were purchased from Shanghai Chemical Reagent Co. Ltd. Nafion solution DE520 (Dupont®, 5% in isopropanol and water). All the chemicals were used without further purification. The deionized (DI) water through Millipore system (Milli-Q®) with resistivity ~18.0 MΩ cm⁻¹ was used.

1.1. Preparation and purification of MWCNTs Multi-walled carbon nanotubes (MWCNTs) were prepared by chemical vapor deposition of acetylene in a hydrogen flow at 760 °C using Ni–Fe nanoparticles as catalysts.¹ These MWCNTs were then purified by a strong oxidant and calcined at 500 °C for 4 h under the argon atmosphere to remove carbon nanoparticles and carbonaceous impurities. The inductively coupled plasma-mass spectra (ICP-MS) indicated the contents of Ni and Fe used as catalyst in the synthesis of MWCNTs were less than 0.01 % and 0.03 %,
1.2. Plasma surface modification procedure The synthesis of plasma treated MWCNTs (PS-MWCNTs) was performed in a custom-built plasma generator induced by a radio frequency (RF) inductively coupled plasma (ICP) as reported in our previous work.2,3 Prior to ignition of the N\textsubscript{2} plasma, the pressure in the reactor was evacuated to 4.0 Pa. Pure N\textsubscript{2} gas was then introduced into the reactor via a gas mass flow controller (MFC) at a flow rate of 10 sccm. Plasma ignition occurred at \(~\)16 Pa with a frequency of 13.56 MHz and a supplied power of 150 W. MWCNTs were treated by N\textsubscript{2} plasma for 40 min under continuous stirring. The plasma treated MWCNTs possess a hydrophilic surface and can form a homogeneously dispersed solution in water.

1.3. Preparation of PtRu/PS-MWCNTs The PtRu/PS-MWCNTs catalysts were prepared by a HCHO reduction method as reported in ref. 4. Typically, predefined amounts of hexachloroplatinic acid (37 wt.% Pt) and ruthenium (III) chloride (40 wt.% Ru) were dissolved in deionized water. The obtained solution was adjusted to pH \(> 10\) with a 2.5 M aqueous solution of NaOH and mixed with 500 mg PS-MWCNTs, which was ultrasonicated and vigorously stirred at room temperature for 4 h, followed by adding excess HCHO (37–40 wt.%) and heating at 353 K for 1 h under constant stirring under a N\textsubscript{2} flow. The solids were then obtained by filtration, washed with excess deionized water and dried in vacuum at 353 K for 12 h.

1.4. H\textsubscript{2} plasma reduction of PtRu/PS-MWCNTs H\textsubscript{2} plasma reduction of the obtained PtRu/PS-MWCNTs catalysts synthesized above was performed in a custom-built plasma generator induced by a radio frequency (RF) inductively coupled plasma (ICP) as described in the previous section. Typically, 250 mg of the PtRu/PS-MWCNTs catalysts was introduced into the reactor. Prior to ignition of the H\textsubscript{2} plasma, the pressure in the reactor was evacuated to 4.0 Pa. Pure H\textsubscript{2} gas was then introduced into the reactor via a gas mass flow controller (MFC) at a flow rate of 10
Plasma ignition occurred at ~16 Pa with a frequency of 13.56 MHz and a supplied power of 150 W. PtRu/PS-MWCNTs catalysts were treated by H₂ plasma for 60 min under continuous stirring.

1.5. Characterization Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) investigations were carried out in a JEOL JEM-2000EX operating at 100 keV and a JEOL JEM-2011 equipped with an energy-dispersive X-ray (EDX) spectrometer using an accelerating voltage of 200 kV, respectively. The TEM samples were prepared by ultrasonic dispersion of a PtRu/PS-MWCNTs catalyst in ethanol for about 10 min, followed by dropping a small amount of the dispersion on a 400-mesh carbon-coated copper grid and letting it dry in air. X-ray diffraction (XRD) patterns were performed on a D/Max-III A X-ray diffractometer (Rigaku Co., Japan), using Cu Kα (λ_Kα1=1.5418 Å) as the radiation source to identify the crystalline structure. X-ray photoelectron spectra (XPS) of the composites were performed on a Thermo ESCALAB 250 electron spectrometer from VG Scientific using 150 W Al Kα as the exciting source. The XPS photoelectron binding energy (BE) of the adventitious carbon species, i.e., the C 1s line at 284.4 eV was used to correct the observed binding energies for surface charging. The deconvolution of the XPS spectra was by a least-square procedure to a product of Gaussian-Lorentzian functions after a background subtraction by using the software XPSPEAK.

1.6. Electrochemical measurements 1 M NaOH and 1 M NaOH + 1 M ethanol aqueous solution were selected as the electrolyte solutions for the electrochemically active surface area (ECSA) and ethanol electrooxidation measurements, respectively, and both solutions were deaerated with N₂ before measurements. The electrochemical measurements were measured at the scan rate of 50 mV s⁻¹ at 20 °C using an Autolab potentiostat/galvanostat (IM6e, Zahner, Germany) in a three electrodes and one compartment configuration cell. A Pt wire was served as the counter electrode and a KCl saturated Ag/AgCl electrode as the reference electrode. All potentials in this
work were quoted against Ag/AgCl (KCl (sat.)). A predefined amount of PtRu/PS-MWCNTs catalysts were added to 1 mL 2-propanol, which were then shaken for 30 min in an ultrasonic bath to form slurry. This slurry was brushed onto a piece of carbon paper (0.4 × 0.6 cm; HCP020P) and dried in an oven at 80 °C for 20 min to remove the solvent. The weight of the carbon paper with dried PtRu/PS-MWCNTs nanocomposites was measured and subtracted from that before coating of the slurry to obtain the loading of metal-carbon nanocomposites. Experiments were controlled so that PtRu/PS-MWCNTs catalysts were obtained the predefined amount of metal loaded on the electrode, which were later used as working electrodes for electrochemical measurements. A 100 μL amount of 5 wt% Nafion solution DE520 was spread on top of the carbon nanocomposite layer and dried at 80 °C. Nafion acted as a protective layer to prevent loss of catalyst powder into the electrolyte solution. The electrodes were activated by cycling the potential between -1.2 and 0.1 V versus Ag/AgCl for ECSA measurements and between -0.8 and 0.4 V versus Ag/AgCl for ethanol electrooxidation measurements.

2. Supplementary results

Fig. S1 Typical TEM images of the PtRu/PS-MWCNTs with higher magnifications before (a) and after (b) the H₂ plasma treatment.
Fig. S2 EDX spectrum of PtRu/PS-MWCNTs.

Fig. S3 XPS spectra for C 1s + Ru 3d in the PtRu/PS-MWCNTs before (a) and after (b) the H$_2$ plasma treatment.

The entire Ru 3d and C 1s envelopes were deconvolved, as shown in Fig. S3. The envelopes are fitted with a C 1s peak and two pairs of Ru 3d peaks, respectively, which are consistent with the results reported in literature.5 The relative integration areas of the peaks indicate that metallic Ru(0) is another main species. However, the
shoulder at the low-energy side may be assigned as Ru oxide and amorphous RuO\textit{x}\textit{H}\textit{y} species.

References

