Electronic Supplementary Information

Pore size control and organocatalytic properties of nanostructured silica hybrid materials containing amino and ammonium groups

Samir El Hankari, Blanca Motos-Pérez, Peter Hesemann, * Ahmed Bouhaouss and Joël J.E. Moreau

Institut Charles Gerhardt de Montpellier, 8 rue de l'Ecole Normale, 34296 Montpellier cedex 05, France
e-mail: peter.hesemann@enscm.fr
phone: +33-(0)4.67.14.72.17
fax: +33-(0)4.67.14.43.53
Summary

Photos 1-6: SEM-image of materials A16A18, 1/5 and 1/10

Figure 1: Nitrogen adsorption-desorption isotherms of materials A12, A14, 1/5, 1/20 and 1/40.

Figure 2: Pore-pore distance in the materials vs. molar mesitylene/precursor 1 ratio in the hydrolysis condensation mixture

Figure 3: 29Si CP-MAS solid state NMR spectrum of material A16A18 after 5 successive Henry reaction cycles

Figure 4: 13C CP-MAS solid state NMR spectrum of material A16A18 after 5 successive Henry reaction cycles

Figure 5: 29Si CP-MAS solid state NMR spectrum of material A16A18 after 4 successive ring opening reaction cycles

Figure 6: 13C CP-MAS solid state NMR spectrum of material A16A18 after 4 successive ring opening reaction cycles

Figure 7: 29Si CP-MAS solid state NMR spectrum of material A16A18-p after 4 successive ring opening reaction cycles

Figure 8: 13C CP-MAS solid state NMR spectrum of material A16A18-p after 4 successive ring opening reaction cycles

Figure 9: X-ray diffractogram of material A16A18 after 5 successive ring opening reaction cycles

Figure 10: X-ray diffractogram of material A16A18-p after 4 successive ring opening reaction cycles

Table 1: Elemental analysis of material A16A18-p before and after use in ring opening reaction

Figure 11: Nitrogen adsorption-desorption isotherms of material A16A18-p before and after four reaction cycles in ring opening reaction of glycidol
Photos 1-6: SEM-image of materials A16A18, 1/5 and 1/10
Figure 1: Nitrogen adsorption-desorption isotherms of materials A12, A14, 1/5, 1/20 and 1/40.

Figure 2: Pore-pore distance in the materials vs. molar mesitylene/precursor 1 ratio in the hydrolysis condensation mixture
Solid state NMR spectra of the materials after use in Henry reactions

Figure 3: 29Si CP-MAS solid state NMR spectrum of material A$_{16}$A$_{18}$ after 5 successive Henry reaction cycles

Figure 4: 13C CP-MAS solid state NMR spectrum of material A$_{16}$A$_{18}$ after 5 successive Henry reaction cycles
Solid state NMR spectra of the materials after use in ring opening reaction of glycidol with lauric acid

Figure 5: 29Si CP-MAS solid state NMR spectrum of material A16A18 after 5 successive ring opening reaction cycles.

Figure 6: 13C CP-MAS solid state NMR spectrum of material A16A18 after 5 successive ring opening reaction cycles.
Figure 7: 29Si CP-MAS solid state NMR spectrum of material A16A18-p after 5 successive ring opening reaction cycles.

Figure 8: 13C CP-MAS solid state NMR spectrum of material A16A18-p after 5 successive ring opening reaction cycles.
Figure 9: X-ray diffractogram of material A16A18 after 5 successive ring opening reaction cycles

Figure 10: X-ray diffractogram of material A16A18-p after 5 successive ring opening reaction cycles

Table 1: Elemental analysis of material A16A18-p before and after use in ring opening reaction

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>H</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>A16A18-p before catalysis</td>
<td>31.06</td>
<td>6.48</td>
<td>3.81</td>
</tr>
<tr>
<td>A16A18-p after catalysis</td>
<td>36.26</td>
<td>10.49</td>
<td>2.01</td>
</tr>
</tbody>
</table>
Figure 11: Nitrogen adsorption-desorption isotherms of material A16A18-p before and after four reaction cycles in ring opening reaction of glycidol