Supporting Information for:

A Precursor Strategy for the Synthesis of Low Band-Gap Polymers: An Efficient Route to a Series of Near-Infrared Electrochromic Polymers

Gang Qian, a Hana Abu a and Zhi Yuan Wang a,b

a Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
b State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China

E-mail: wayne_wang@carleton.ca

Figure S1. TGA traces of polymers P1-P5.
Figure S2. Normalized absorption (top) and fluorescence emission (bottom) spectra of polymers P1-P5 in film.
Figure S3. Photos of polymers P1-P5 in solid state (top) and in chlorobenzene (bottom).
Figure S4. Photography of green polymer P3 on cloth with a leaf.
Figure S5. Cyclic voltammograms of films of polymers P1 and P3-P5 on ITO glass plate in CH3CN containing 0.1 M Et4NClO4.
Figure S6. The neutral, radical cation and dication states during the redox process of polymer P3.
Figure S7. Absorption spectra of P3 film on ITO glass plate in its neutral, cation and dication states.
Figure S8. 1H NMR spectrum of monomer 2.
Figure S1. TGA curves of P1-P5.

Figure S2. Normalized absorption (top) and fluorescence emission (bottom) spectra of polymers P1-P5 in film.
Figure S3. Photos of polymers P1-P5 in solid state (top) and in chlorobenzene (bottom).

Figure S4. Photography of green polymer P3 on cloth with a leaf.
Figure S5. Cyclic voltammograms of films of polymers P1 and P3-P5 on ITO glass plate in CH$_3$CN containing 0.1 M Et$_4$NClO$_4$.
Figure S6. The neutral, radical cation and dication states during the redox process of polymer P3.
Figure S7. Absorption spectra of P3 film on ITO glass plate in its neutral, cation and dication states.

Figure S8. 1H NMR spectrum of monomer 2.