Supplementary Information

Phase Behaviour of Liquid-Crystalline Polymer / Fullerene Organic Photovoltaic Blends: Thermal Stability and Miscibility

Christian Müller, Jonas Bergqvist, Koen Vandewal, Kristofer Tvingstedt, Ana Sofia Anselmo, Roger Magnusson, M. Isabel Alonso, Ellen Moons, Hans Arwin, Mariano Campoy-Quiles, Olle Inganäs

Suppl. Fig. 1. Refractive index n (top) and extinction coefficient k (bottom) of F8TBT$_{5k}$:PC$_{61}$BM thin films deduced from variable-angle spectroscopic ellipsometry (VASE) scans at 50 °C using the Standard Critical Point Model. The composition ranges from pure F8TBT$_{5k}$ to pure PC$_{61}$BM as indicated.
Suppl. Fig. 2. Transition temperatures of F8TBT$_{5k}$ and 20:80 F8TBT$_{5k}$:PC$_{61}$BM with respect to thin film thickness d. The glass transition temperatures T_g(F8TBT$_{5k}$) \sim 104 ± 2 °C (full stars) and T_g(20:80 F8TBT$_{5k}$:PC$_{61}$BM) \sim 98 ± 2 °C (open stars) appear independent of d. Whereas T_i(20:80 F8TBT$_{5k}$:PC$_{61}$BM) \sim 138 ± 4 °C (open circles) is equally invariant, T_i(F8TBT$_{5k}$) \sim 179 ± 2 °C (full circles) increases for $d \leq 50$ nm.

Suppl. Fig. 3. Absolute photoluminescence (PL) spectra of F8TBT$_{5k}$:PC$_{61}$BM binaries. Spectra were recorded under the same illumination conditions. The composition ranges from pure F8TBT$_{5k}$ to 20:80 F8TBT$_{5k}$:PC$_{61}$BM as indicated.
Suppl. Fig. 4. $J - V$ characteristics of 20:80 F8TBT$_{36k}$:PC$_{61}$BM photovoltaic devices under 1000 W m$^{-2}$ illumination. The active layer was annealed for 16 hours at the temperatures indicated before top electrode deposition (solid lines) as well as after top electrode deposition (dashed line). For completeness, dark-current characteristics are also displayed.