Supporting Information For

Biomolecule-assisted hydrothermal synthesis of In$_2$S$_3$ porous films and enhanced photocatalytic properties

Weiming Qiua, Mingsheng Xua, Xi Yanga, Fei Chenb, Yaxiong Nana, Jinglin Zhanga, Hideo Iwaic, and Hongzheng Chena*

a State Key Lab of Silicon Materials, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, & Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
Tel/Fax: +86-571-87952557; E-mail: hzchen@zju.edu.cn
b Laboratory of Polymer Materials and Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, P. R. China
c Materials Analysis Station, Department of Materials Infrastructure, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.

* Corresponding author: hzchen@zju.edu.cn (Hongzheng Chen)
Fig. S1 XRD pattern for the film obtained by hydrothermal treatment at 160 °C for 12 h without adding GSH, showing the diffraction peaks of In(OH)$_3$. The unlabeled peaks may be attributed to the ITO substrates and other compounds existing in the film.

Fig. S2 UV-Vis absorption spectra of the In$_2$S$_3$ porous films obtained at different reaction times.
Fig. S3 SEM images illustrating the morphology of the In$_2$S$_3$ dense film (~1 μm) synthesized by chemical bath deposition method using In(NO$_3$)$_3$ and thioacetamide as precursors: (a) Top view; (b) Cross-section view.

Fig. S4 SEM image of the In$_2$S$_3$ porous film after photocatalytic test (Under UV radiation for 2h).