Supporting Information

Porous Graphene Oxide Frameworks: Synthesis and Gas Sorption
Gadipelli Srinivas1,2,\#, Jacob W. Burress1, Jamie Ford1,2, Taner Yildirim1,2,\#

1NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899-6102, USA.
2Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6272, USA.

\textbf{Figure S1}: Raman spectra of as-synthesized (at 100 °C solvothermal) GO, GOF-1PBA, and GOF-4PBA.
Figure S2: TG plots of pristine boronic acids: 1PBA=1-phenylboronic acid; 14PDBA=1,4-phenyldiboronic acid; 4BPBA=4-biphenylboronic acid; 44BPDBA=4,4′-biphenyldiboronic acid.
Figure S3: XRD patterns of GOFs (synthesized at 100 °C solvothermal) after out gassed at different temperatures; the precursor GO subjected to the same conditions is also given. The inset shows variation of d-spacing upon outgassed temperature.
Figure S4: Effect of outgassing temperature on the N\textsubscript{2} and H\textsubscript{2} adsorption-desorption (at 77 K) properties of GOF-1PBA (synthesized at 100 °C solvothermal).
Figure S5: Temperature dependence of H_2 uptake of GOF-1PBA and GOF-14PDBA (synthesized at 100 °C solvothermal).
Figure S6: The N₂ and H₂ adsorption-desorption (at 77 K) properties of GO, GOF-1PBA and GOF-14PDBA: Synthesized at different temperatures of solvothermal process, and are out gassed at 120 °C before gas sorption analyses.
Figure S7: a) XRD patterns and b) TG plots of rGOF-14PDBA (red) synthesized at 100 °C from a solvothermal reduced GO (black) also at 150 °C.
Figure S8: FTIR spectra of GO and GOFs synthesized at 150 °C solvothermal process. There one cannot differentiate any change between GO and GOFs spectra.