Supplementary Information for:

Facile Route to Functionalized Mesoporous Silica Nanoparticles by Click Chemistry

Nirmalya Moitra, Philippe Trens, Laurence Raehm, Jean-Olivier Durand, Xavier Cattoën and Michel Wong Chi Man

Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM2-ENSCM-UM1,

CC1701 Place Eugène Bataillon, 34095 Montpellier Cedex 05, France.
Fig. S1: Size distribution of the nanoparticles as determined by DLS (MIE representation)
Fig. S2: SAXS of the azide-functionalized MSN
Fig. S3: N₂-adsorption–desorption isotherms of nanoparticles: NP-N₃-1 (left) and NP-N₃-10 (right), before (circles) and after (squares) the click reaction with 3 (Adsorption branches (filled symbols), desorption branches (empty symbols)).
Fig. S4: α_s plot in the case of NP-Alk-1.
Fig. S5: Pore size distribution of the nanoparticles in the case of NP-N3-1 (left) and NP-N3-10 (right), before (circles) and after (squares) the click reaction with 3.
Fig. S6: Thermogravimetric analyses (10 °C min⁻¹) of the clickable nanoparticles (green: weight (%); blue: derivative (% °C⁻¹)). The weight loss before 110 °C corresponds to solvent molecules adsorbed on the material; the weight loss centered at ca 300 °C is attributed to the unbound organic fragments (residual surfactant molecules); the final weight loss (> 300 °C) corresponds to the organics covalently anchored to the silica matrix.
Fig. S7: UV-vis absorption spectra of the clicked MSN.
Fig. S8: Fluorescence spectra of the alkyne-functionalized nanoparticles after the click reaction with 4 ($\lambda_{\text{exc}} = 330$ nm, spectra normalized at 415 nm).