Controlling vanadium phosphate catalyst precursor morphology by adding alkane solvents in the reduction step of VOPO$_4$·2H$_2$O to VOHPO$_4$·0.5H$_2$O

Weihao Wenga, Raja Al Otaibib, Mosaed Alhumaimessb, Marco Conteb, Jonathan K. Bartleyb, Nicholas F. Dummerb, Graham J. Hutchingsb and Christopher J. Kielya

a Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015-3195, USA

b Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT UK

Supplemental Information

Figure S1. Laser Raman spectra of catalyst precursors.

Figure S2. Laser Raman spectra of sample VPD-O.

Figure S3. Laser Raman spectra of activated catalysts.
Figure S1. Laser Raman spectra of catalyst precursors VPD-B, VPD-BO, VPD-M and VPD-OB showing a main band at 986 cm$^{-1}$ corresponding to the VOHPO$_4$·0.5H$_2$O phase.
Figure S2. Laser Raman spectra of sample VPD-O showing main bands of VOPO$_4$$^\cdot$2H$_2$O at 990, 943 and 538 cm$^{-1}$ corresponding to the VOPO$_4$$^\cdot$2H$_2$O phase.
Figure S3. Laser Raman spectra of activated catalysts VPD-B-c, VPD-BO-c, VPD-M-c and VPD-OB-c showing main bands at 925, 1132 and 1185 cm\(^{-1}\) corresponding to the \((\text{VO})_2\text{P}_2\text{O}_7\) phase.