Efficient synthesis of polymeric g-C₃N₄ layered materials as novel efficient visible light driven photocatalyst

Fan Dong*, Liwen Wu, Yanjuan Sun, Min Fu, Zhongbiao Wu and S. C. Lee

College of Environmental and Biological Engineering, Chongqing Technology and Business University, Chongqing, 400067, P. R. China.
Department of Environmental Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
Department of Civil and Structural Engineering, Research Center for Environmental Technology and Management, The Hong Kong Polytechnic University, Hong Kong, P. R. China.
* To whom correspondence should be addressed. E-mail: dfctbu@126.com, zbwu@zju.edu.cn

Fig. S1 Enlarged view of XRD patterns in the range of 25-30 degree of g-C₃N₄ obtained under different temperatures
Fig. S2 FT-IR spectra in the range of 500-2000 cm⁻¹ of g-C₃N₄ obtained under different temperatures
Fig. S3 XPS spectra of C1s (a), N1s (b) and O1s (c) for CN-575 sample.
Fig. S4 Room temperature PL of CN-450 and CN-575 samples (excitation light source: 280 nm)
Fig. S5 Image of RhB solution before and after irradiation over CN550 sample

Fig. S1 Enlarged view of XRD patterns in the range of 25-30 degree of g-C₃N₄ obtained under different temperatures
Fig. S2 FT-IR spectra in the range of 2000-4000 cm\(^{-1}\) of g-C\(_3\)N\(_4\) obtained under different temperatures.

Fig. S3 XPS spectra of C1s (a), N1s (b) and O1s (c) for CN-575 sample.
Fig. S4 Room temperature PL of CN-450 and CN-575 samples (excitation light source: 280 nm)

Fig. S5 Image of RhB solution before and after irradiation over CN550 sample