Electronic Supporting Information (ESI)

Increased photocurrent response in Nb-doped TiO₂ nanotubes

Min Yang a,b, Himendra Jha a, Ning Liu a and Patrik Schmuki a*

a Department of Materials Science, WW4-LKO, University of Erlangen-Nuremberg, Martensstrasse 7, D-91058 Erlangen, Germany

b Current address: Department of Catalysis Science and Engineering, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, PR China

Email: schmuki@ww.uni-erlangen.de (P. Schmuki).

Fig. S1 XPS of Nb3d peaks in 0.1 wt% Nb-doped and 0.5 wt% Nb-doped TiO₂ nanotube layers. Quantitative evaluation shows the content in the oxide to be close to the nominal alloy composition (0.1 wt% Nb is however close to detective limit of XPS).
Fig. S2 Light absorbance for pure TiO₂ and 0.1 wt% Nb-doped TiO₂ nanotube layers with 2μm thickness annealed at 650°C, acquired using diffuse reflectance measurements. It shows the absorbance of the Nb-doped material to be higher than for plain TiO₂.