Electronic supplementary information

Germanium Nanocrystal Doped Inverse Crystalline Silicon Opal

Makoto Seino, a Eric J. Henderson, b Daniel P. Puzzo, b Naoki Kadota, a Geoffrey A. Ozin b*

a Solar Energy Division, Kaneka Corporation, 2-1-1, Hieitsuji, Otsu Shiga 520-0104, Japan
b Department of Chemistry, University of Toronto, 80 St. George St., Toronto, M5S 3H6, Canada. Fax: 1-416-971-2011; E-mail: gozin@chem.utoronto.ca

Experimental Procedures

Materials. Anhydrous ethanol was purchased from Brampton and used as received. Colloidal germanium nanocrystals (ncGe) suspended in ethanol (0.002 g/mL) were prepared similarly to our previous report. 10 Monodisperse silica microspheres with 360 nm diameter were synthesized by a modified Stöber process 17 and sonicated in anhydrous ethanol before use. Sapphire wafer was purchased from University wafer and cleaned using a piranha solution. Disilane (99.99 %) was purchased from Gelest and used as received. Hydrofluoric acid aqueous solution (HF (aq), 2 wt%) was prepared from a solution (48 wt%) purchased from Aldrich.

Preparation of ncGe-o. In a typical experiment, a silica opal with 5 wt% of ncGe (5wt%-ncGe-o) was prepared as follows. Colloidal ncGe ethanol solution (0.625 mL) was added to a vial and diluted to 7.75 mL with anhydrous ethanol and sonicated for 2 h. Then a silica microsphere ethanol solution (0.1 g/mL, 0.25 mL) was added to the solution and sonicated for 2 h. A sapphire wafer was placed vertically into the solution at an ambient temperature of 35 °C for 3 days to allow the self-assembly of ncGe and silica microspheres via ethanol evaporation. The procedure was repeated twice to give 5wt%-ncGe-o deposited on the sapphire wafer. 3wt%-ncGe-o and 7wt%-ncGe-o were prepared from 0.375 and 0.875 mL of ncGe ethanol solution similarly as described above.

Preparation of i-ncGe-cSi-o. Amorphous Si was deposited in the interstices of the ncGe-o via dynamic chemical vapor deposition (CVD) from disilane precursor. The ncGe-o was heated to 450 °C in a custom-built CVD reactor with the pressure maintained at 0.5 mTorr. Then disilane gas was flowed over the ncGe-o with a pressure of ca. 370 mTorr for 3.5 h. The amorphous Si
over-layer was removed by unidirectional reactive ion etching (RIE) with CHF₃ plasma. Then the silica opal was chemically etched in HFₐq (2 wt%) for 3 h. The resulting inverse amorphous Si opal was annealed 630 °C in a tube furnace under flowing hydrogen (5 %)/argon (95 %) atmosphere for 20 h, and subsequently under nitrogen for 20 h, to give i-ncGe-cSi-o. Hydrogen-plasma passivation of i-ncGe-cSi-o was carried out via plasma-enhanced CVD. The i-ncGe-cSi-o was set into a dc saddle-field plasma-enhanced CVD reactor. Hydrogen gas was flowed into the reactor at 280 sccm with the pressure at 1 Torr and then plasma passivation was done at the dc power of 0.08 W/cm² at 300 °C for 2 h.

Characterization. Field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDX) were performed on a Hitachi S-5200. The ncGe-o sample was carbon-coated to improve the resolution. Reflectance and absorption spectra for ncGe-o were measured by a Shimadzu UV-3100PC UV-vis-NIR scanning spectrophotometer. Reflectance spectra for i-ncGe-cSi-o were obtained on a Perkin Elmer UV-vis-NIR spectrometer Lambda 900. Transmission electron microscopy (TEM) and EDX were performed at the Canadian Centre for Electron Microscopy at McMaster University using a FEI Titan electron microscope. TEM samples of i-ncGe-cSi-o were scratched from the sapphire wafer and deposited onto carbon-coated copper grids. Powder X-ray diffraction patterns (PXRD) of i-ncGe-cSi-o were obtained on a sapphire wafer and acquired using a Siemens D5000. X-ray photoelectron spectroscopy (XPS) was acquired using a Thermo Scientific Theta Probe utilizing monochromatic Al Kα radiation. The spectra were calibrated to the C1s peak (284.8 eV) arising from adventitious carbon. Raman spectroscopy was performed using a 532 nm diode laser and calibrated using a crystalline Si wafer. DC electrical photo and dark conductivities (σₚₑ, σ₅) were measured by the two probe method. Aluminum coplanar electrodes at a separation of 1 mm and a width of 5 mm were deposited on the samples using an Ulvac EBH-6. Yokogawa Hewlett Packard 4140B pA meter/dc voltage source was used for all electrical measurements. Ohmic contacts between the aluminum and the i-cSi-o film were confirmed from I-V curves which were linear. Each current was recorded with the voltage at 50 V under AM 1.5 condition (100 mW/cm²) using a Wacom WXS-1140S-L2F AM1.5G or in a dark box. The σₚₑ and σ₅ were calculated from the currents at 50 V with the equation $\sigma = LI/WdV$ [S/cm], where L [cm] is the gap length between two electrodes, I [A] is the measured current, W [cm] is the width of the
electrodes, d [cm] is the thickness estimated from cross section SEM images of the samples which contain void spaces, and V [V] is the voltage.

Fig. S1. Elemental Ge map and EDX spectrum of 5wt%-ncGe-o from FE-SEM and optical absorption spectra of ncGe-o. (A) SEM image. (B) Elemental Ge mapping image. (C) EDX spectrum. (D) Absorption spectra of ncGe-o with pure silica opal as a reference: (a) silica opal, (b) 3wt%-ncGe-o, (c) 5wt%-ncGe-o and (d) 7wt%-ncGe-o.

Fig. S2. (A) TEM image and (B) Elemental Ge mapping image of i-5wt%-ncGe-cSi-o.
Table S1. Dark and photo conductivities of i-ncGe-cSi-o and i-cSi-o as a reference

<table>
<thead>
<tr>
<th>sample</th>
<th>thickness (nm)<sup>a</sup></th>
<th>current (A)<sup>b</sup></th>
<th>conductivity (S/cm)<sup>c</sup></th>
<th>photo sensitivity (<sup>σ</sup>ph/<sup>σ</sup>d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>i-cSi-o</td>
<td>1502</td>
<td>1.64E-05</td>
<td>2.16E-05</td>
<td>4.36E-04</td>
</tr>
<tr>
<td>i-3wt%-ncGe-cSi-o</td>
<td>1892</td>
<td>7.08E-07</td>
<td>1.19E-06</td>
<td>1.50E-05</td>
</tr>
<tr>
<td>i-5wt%-ncGe-cSi-o</td>
<td>2643</td>
<td>7.33E-07</td>
<td>1.20E-06</td>
<td>1.11E-05</td>
</tr>
<tr>
<td>i-7wt%-ncGe-cSi-o</td>
<td>2986</td>
<td>5.48E-08</td>
<td>9.82E-08</td>
<td>7.34E-07</td>
</tr>
</tbody>
</table>

^aEstimated from cross section FE-SEM images of the samples which contain void spaces. ^bAverage of 3 measurements at 50 V. ^cRecorded in dark box. ^dRecorded under AM 1.5 condition (100 mW/cm²). ^e^σ = LI/WdV [S/cm], where ^L [0.1 cm] is the gap length between two electrodes, ^I [A] is the measured current, ^W [0.5 cm] is the width of the electrodes, ^d [cm] is the thickness estimated by FE-SEM, and ^V [50 V] is the voltage.

References