Supporting Information

Versatile grafting chemistry for creation of stable molecular layers on oxides

Peerasak Paoprasert, Srikanth Kandala, Daniel P. Sweat, Rose Ruther, and Padma Gopalan

1. Department of Chemistry, University of Wisconsin, Madison, WI, USA 53706
2. Department of Materials Science and Engineering, University of Wisconsin, Madison, WI, USA 53706

Calculations of surface coverage of the molecular layers on SiO$_2$ and TiO$_2$ by XPS

The overall number of the atoms of interest (X) per unit area of TiO$_2$, for example, can be calculated from the using:

$$N(X) = \frac{A(X)s(Ti)\rho(Ti, TiO_2)\sin(\theta)\exp\left(\frac{t}{\lambda(X, organic)\sin(\theta)}\right)}{A(Ti)s(X)\exp\left(\frac{t}{\lambda(Ti, organic)\sin(\theta)}\right)}$$

where $N(X)$ is number of atoms per unit area, $A(X)/A(Ti)$ is the ratio of integrated XPS peak areas, $s(Ti)/s(X)$ is sensitivity factor ratio between titanium and atom of interest, $\rho(Ti, TiO_2)$ is number of Ti atoms per unit volume in SiO$_2$, $\lambda(Ti, TiO_2)$ is inelastic mean free path (IMFP) of Ti photoelectrons in TiO$_2$, t is thickness of the layer, $\lambda(X, organic)$ and $\lambda(Ti, organic)$ are IMFPs of X and Ti in organic films, respectively.1 The angle θ is the take-off angle of photoelectrons with respect to the sample plane ($\theta = 45^\circ$). Neglecting the surface roughness2 and using similar approximation of IMFPs of organic self-assembled monolayers from previous studies [$\lambda(A^\circ) =$...
9.0 + 0.022*E(eV)] where E(eV) is the kinetic energy in electron volts, \(\lambda(X, \text{organic}) \sim 2.8-3.5\) nm and \(\lambda(\text{Ti, TiO}_2) \sim \lambda(\text{Ti 2p, organic}) = 3.3\) nm. Since \(\lambda(X, \text{organic}) \sim \lambda(\text{Ti 2s, organic})\) and \(t < \lambda\) for thin organic layer approximation, we conclude that
\[
\exp\left(\frac{t}{\lambda(\text{Ti,organic})\sin(\theta)}\right) \approx 1.
\]

Using \(p(\text{Ti, TiO}_2) = 2.6 \times 10^{22}\) atoms/cm\(^3\), \(s(\text{N 1s}) = 0.477\), \(s(\text{Cl 2p}) = 0.891\), and \(s(\text{Re 4f}) = 3.961\), the surface coverage of bipyridine and rhenium-bipyridine complex on TiO\(_2\) was calculated. For the calculation of surface coverage of organic layers on SiO\(_2\), \(p(\text{Si, SiO}_2) = 5.0 \times 10^{22}\) atoms/cm\(^3\) and \(s(\text{Si 2s}) = 0.399\) were used.

Synthesis of ReOH

ReOH was synthesized using the literature procedure.\(^4\) To a 50-mL round bottom flask, BipyOH (0.24 g, 1.3 mmol), Re(CO)\(_5\)Cl (0.47 g, 1.3 mmol), and methanol (20 mL) were added. The reaction mixture was heated at 60 °C overnight. After cooling down to room temperature, the mixture was precipitated in hexane and then filtered and washed with cold hexane and cold methanol to yield the ReOH (0.48 g, 75%). \(^1\)H NMR (300 MHz, DMSO-d\(_6\), \(\delta\) in ppm): 8.99 (d, J=5 Hz, 2H), 8.93 (d, J=9 Hz, 1H), 8.70 (d, J=8 Hz, 1H), 8.61 (s, 1H), 8.31 (dt, J=1, 8 Hz, 1H), 7.74 (dt, J=1, 8 Hz, 1H), 7.69 (d, J=6 Hz, 1H), 5.81 (t, J=6 Hz, 1H, -OH), 4.74 (d, J=6 Hz, 2H, -CH\(_2\)-). \(^{13}\)C NMR (75 MHz, DMSO-d\(_6\), \(\delta\) in ppm): 197.8, 190.1, 156.8, 155.2, 154.7, 152.9, 152.6, 140.3, 127.8, 124.8, 124.1, 121.2, 61.4.
1H-NMR of BipyOH

Aromatic CH's

CDCl$_3$

1H-NMR of ReOH

Aromatic CH's

1C-NMR of ReOH
The IRRAS spectrum of grafted rhenium-bipyridine complex (BipyOH-Re) on TiO\textsubscript{2} is similar to that on SiO\textsubscript{2}. Three C≡O stretching bands, one at 2024 cm-1 corresponding to the symmetric stretching mode of metal carbonyl groups and two overlapping asymmetric stretching bands at 1905 cm-1 were observed indicating the presence of rhenium-bipyridine complex on TiO\textsubscript{2} surface.
NMR spectra of Bipy(OH)$_2$: before and after heating at 160°C for 48 h showing no change in the spectrum. This rules out self-condensation or degradation upon thermal annealing on the substrate to form multilayers. Hence, the higher surface coverage of Bipy(OH)$_2$ is primarily due to bidentate anchoring to the substrate via ether bond formation.

Reference:

