Supporting information

Highly Ordered Defect Arrays of 8CB (4’-n-octyl-4-cyano-biphenyl) Liquid Crystal via Template-Assisted Self-Assembly

Jung Hyun Kim,† Yun Ho Kim,‡ Hyeon Su Jeong,‡ Eun Kyoung Youn† and Hee-Tae Jung†,*

† Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Gwahangno, Yuseong-gu, Daejeon 305-701 (Korea)
‡ United States Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO 63130.

Author E-mail Address: heetae@kaist.ac.kr
Fig. S1. a) The molecular structure and phase transition temperature of 4'-n-octyloxy-4-cyano-biphenyl (8OCB). b) POM images of 8OCB in a PEI coated rectangular microchannel with width = 20µm and depth = 10µm. c) POM image of 8OCB in a PEI coated trapezoidal microchannels with top-width = 40µm, bottom-width = 19.5µm and depth = 14.4µm (Scale: 50µm).
Fig. S2. POM images of 8CB in rectangular shaped channels of different widths and depths. a-d) width = 10 - 40µm (from top to bottom) and fixed depth = 5µm. e-h) width = 10 - 40µm (from top to bottom) and fixed depth = 10µm (Scale: 50 µm).
Fig. S3. a-e) POM images of 8CB in V-shaped channels of different $w = 3 - 20\mu m$ and $h = 1.8-14.4\mu m$ (Scale: 50µm). f) POM images taken by rotating the samples at 0° and 45°.
Fig. S4. a-e) POM textures of 8CB in trapezoidal microchannels of different \(u \), \(l \) and \(h \) of channel. The detail information of trapezoidal channels is shown in Table. (Scales: 50\(\mu \)m). The average radius \(\langle a \rangle \) of TFCDs was \(\langle a \rangle = (1.63 \pm 0.07) \) \(\mu \)m in channel (a), \(\langle a \rangle = (2.29 \pm 0.13) \) \(\mu \)m in channel (b), \(\langle a \rangle = (2.96 \pm 0.05) \) \(\mu \)m in channel (c), \(\langle a \rangle = (3.8 \pm 0.18) \) \(\mu \)m in channel (d), \(\langle a \rangle = (5.2 \pm 0.16) \) \(\mu \)m in channel (e). f) Illustrations of the effective volume in trapezoidal channel influencing to form TFCD.