Supporting Information

Supramolecular isomer-dependent photochromism and emission color tuning of bipyridinium salts

Jian-Ke Sun, Xu-Hui Jin, Li-Xuan Cai and Jie Zhang

a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China; E-mail: zhangjie@fjirsm.ac.cn
b Graduate School of Chinese Academy of Sciences, Beijing, 100039, P. R. China

Additional characterization data and structural figures

Fig. S1 a) A 1D hydrogen-bonded helical chain in A1. b) A 1D hydrogen-bonded zigzag chain in A2. The hydrogen atoms are omitted for clarity. The dashed lines represent hydrogen bonds.

Fig. S2 Left: The topology of 1D channel in A2. Right: 1D meso-helical water chain confined in the channel of A2. The HBpybc+ ligands are simplified as yellow stick. The hydrogen bond distances are in angstrom unit.
Fig. S3 The ESR spectra of A1 (black) and A2 (red) after irradiation.

Fig. S4 The distance and orientation between the donor and acceptor in A1 (upper) and A2 (bottom).
Fig. S5 1H NMR (400 MHz, D$_2$O) for A1 (upper) and A2 (bottom), respectively.
Fig. S6 Normalized fluorescence emission spectra of A1 to show a large blue-shift of the peak position (from 524 nm to 443 nm) with decreasing solvent polarity from water (black) to THF-water (volume ratio: 4:1) mixture (green). Excitation wavelength: 360 nm.

Fig. S7 Calculated XRPD pattern from the single crystal structural data of A1 (black), experimental pattern for the colored samples of A1 after irradiation (green), and initial sample of A1 (red).

Fig. S8 Calculated XRPD pattern from the single crystal structural data of A2 (black), experimental pattern for the colored samples of A2 after irradiation (green), and initial sample of A2 (red).
Fig. S9 Excitation spectral change of A1 in the solid state upon irradiation with a xenon lamp.

Fig. S10 IR spectra of A1 (black) and A2 (red). The bands appearing around 1695 cm\(^{-1}\) are attributed to the characteristic asymmetric C=O stretching vibration of the carboxylic group in monoprotonated HBpybc\(^+\).