A facile hydrazine-assisted hydrothermal method for the deposition of monodisperse SnO$_2$ nanoparticles onto graphene for lithium ion batteries

Seung-Keun Park,a‡ Seung-Ho Yu,b‡ Nicola Pinna,bc Seunghee Woo,d Byung-Chul Jang,a Young-Hoon Chung,b Yong-Hun Cho,e Yung-Eun Sung*b and Yuanzhe Piao*af

aDepartment of Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, 443-270, Korea. Fax: +82-31-8889148; Tel: +82-31-8889141; E-mail: parkat9@snu.ac.kr

bWorld Class University (WCU) program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-744, Korea. E-mail: ysung@snu.ac.kr

cDepartment of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.

dDepartment of Chemistry, Seoul National University, Seoul 151-747, Republic of Korea.

eSchool of Advanced Materials Engineering, Kookmin University, Seoul 136-702, Republic of Korea.

fAdvanced Institutes of Convergence Technology, 864-1 Iui-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-270, Republic of Korea.

‡ These authors contributed equally to this work
Fig S1. TGA curve of GO-S

Fig S2. (a) A TEM and (b) HRTEM image of SnO$_2$ nanoparticles
Fig S3. XPS spectra: survey scan of (a) GO-S, (B) GNS, (C) GO

Fig S4. XPS spectrum: high-resolution Sn 3d of GO-S
Fig S5. HRTEM images of (a) GO-S and (b) SnO$_2$ nanoparticles after cycle for 20 cycles. The cells were cycled at a current density of 100 mA g$^{-1}$ for the first cycle and at a current density of 400 mA g$^{-1}$ for the remaining 19 cycles.