Supplementary Information:

Experimental

Poly (propylene carbonate) (PPC) pellets was supplied by Changchun Institute of Applied Chemistry, Chinese Academy of Science. Its weight-average molecular weight (Mw) was 2.48×10^5 g/mol and Mw/Mn was 3.2. GO sheets were prepared by the oxidation of natural graphite using the Hummers method.\(^{30}\) PPC/GO nanocomposites with 0-1 wt% GO were then prepared as follows (Scheme 1): concentrated and well-dispersed GO in water was firstly prepared with the aid of ultrasonication. 10g PPC was dissolved in 100mL THF under vigorous stirring to yield a clear solution. Then a certain amount of GO/H\(_2\)O solution was added into the PPC/THF solution. The concentration of the GO inside the PPC matrix was quantitatively controlled by syringe titration. After that, this homogeneous PPC/GO mixture was gradually poured into distilled water with stirring. After coagulation in large amount of water, PPC/GO nanocomposites powder was collected, repeatedly washed and dried until its weight unchanged. The composites were then compression molded for testing at a temperature of 130°C.

Tensile testing of neat PPC and PPC/GO composites was determined using an Instron testing machine at 23°C with a crosshead speed of 100mm/min. The tensile specimens were cut with a length of mm, a width of 4 mm and a thickness of 1mm. In order to ensure accuracy and repeatability, at least 8 specimens were tested.

The tensile-fractured surfaces of the specimens were observed using an Inspect field-emission SEM (FEI Company, USA) with 5 kV accelerating voltage.
Dynamic mechanical analysis was performed using a dynamic mechanical analyzer (DMA Q800, TA instrument). A heating rate of 3°C/min and a frequency of 1Hz were employed under multifrequency-strain mode. At least two tests were carried out for each case.
Fig. S1 Schematic representation of novel solution mixing process illustrating the dispersion of GO in the PPC matrix.
Fig. S2 Tensile fracture morphologies of the neat PPC and PPC/GO nanocomposites.

(a) neat PPC. (b) PPC/0.1wt%GO. (c) PPC/0.7wt%GO. (d) PPC/1wt%GO.

With the increasing content of GO, the increased fibrillar-like network of PPC is observed after tensile deformation. GO sheets in the PPC matrix could act as effective physical cross-linking points to hinder PPC chain deformation. This behavior is similar to the cross-linking of natural rubber by sulfur, which leads to a sharply improvement of the tensile strength and modulus.