Supplementary information for:

Incandescent Porous Carbon Microspheres to Light up Cells: Solution Phenomena and Cellular Uptake

Paul Duffya, Luís M. Magnob, Rahul Yadavc, Selene K. Robertsc, Andrew . Wardc, Stanley W. Botchwayc, Paula E. Colavitaa* and Susan J. Quinnb*

a School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
Fax: 353 1 671 2826; Tel: 353 1 896 3562; Email: colavitp@tcd.

b School of Chemistry and Chemical Biology, Centre for Synthesis and Chemical Biology, University College Dublin, Dublin 4, Fax: 353 1 716 1178; Tel: 353 1 716 2407; E-mail: susan.quinn@ucd.ie

c Central Laser Facility, Research Complex at Harwell, Science & Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, Oxfordshire, OX11 0QX, UK

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Supplementary_Fig_S1.png}
\caption{Raman of a single particle optically trapped in water. Raman of LiDCA microspheres suspended in water and trapped for 20 s. No significant changes are observed in this timescale.}
\end{figure}
Supplementary Fig. S2. Photoemission of carbon microspheres. Emission of LiDCA (upper) and NaDCA (lower) microspheres suspended in water. (*Band observed due to diffraction of scattered light.)