Electronic Supplementary Information

Quasi-seeded growth, phase transformation, and size tuning of multifunctional hexagonal NaLnF$_4$ (Ln=Y, Gd, Yb) nanocrystals via \textit{in situ} cation-exchange reaction

L.W. Yang1,2,*, Y. Li, Y. C. Li1, J. J. Li1, J. H. Hao2,*, J. X. Zhong1, P. K. Chu3,*

1Laboratory for Quantum Engineering and Micro-Nano Energy Technology and Faculty of Materials and Optoelectronic Physics, Xiangtan University, Hunan 411105, China

2Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China

3Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China

*Corresponding authors: ylwxtu@xtu.edu.cn; apjhhao@polyu.edu.hk; paul.chu@cityu.edu.hk
Figure S1 (a) and (b) Typical TEM image and selected electron diffraction (SEAD) pattern of the KYb\textsubscript{0.1}Gd\textsubscript{0.9}F\textsubscript{4} NCs.
Figure S2 (a)-(d) EDS spectra taken from the oleate-capped cubic KYb$_{0.1}$Gd$_{0.9}$F$_4$ NCs reacted with 10mol% NaOA at 180°C for different time of 0 h, 2 h, 5 h, and 20 h, respectively.
Figure S3 XRD patterns of the oleate-capped cubic KYb$_{0.1}$Gd$_{0.9}$F$_4$ NCs reacted with 10mol% NaOA at 180°C for different times. The data of cubic KGdF$_4$ and hexagonal NaGdF$_4$ are resourced from Ref. 1 and standard XRD card (JCPDS NO. 27-0699)
Figure S4 XRD patterns of the samples synthesized at 180°C for 20 h using precursors containing K, Na, Yb(10 mol%), Gd(90 mol%) and F with potassium: sodium molar ratios of 100: 0, 98: 2, 94:6 and 90: 10. Diffraction peaks corresponding to cubic phase are marked with diamond symbol.
Figure S5 XRD patterns of the NaYb$_{0.1}$Gd$_{0.9}$F$_4$ samples synthesized for different time durations at 180 °C using precursors with a potassium: sodium molar ratio of 90:10.
Figure S6 (a) Survey spectrum of the KYb$_{0.1}$Gd$_{0.9}$F$_4$ NCs synthesized at 180 °C. (b)-(e) the corresponding K 2p, Yb 4d, Gd 4d, F1s XPS spectra, respectively. The C 1s peak is used as the reference.
Figure S7 XRD patterns of the samples synthesized at 190 °C for 20h with different potassium: sodium molar ratios using precursors containing K, Na, Y, and F.
Figure S8 XRD patterns of the samples synthesized at 190 °C for 20h with different potassium: sodium molar ratios using precursors containing K, Na, Yb, and F.
Figure S9 XRD patterns of the samples synthesized at 210 °C for 20h with different potassium: sodium molar ratios using precursors containing K, Na, Yb, and F.
Figure S10 (a) XRD patterns of the samples synthesized at 210 °C for 20 h using precursors containing K, Na, 45mol% Gd, 55mol% Yb and F with different potassium: sodium molar ratios of 80:20, 60:40 and 40:60, respectively. (b) EDS spectrum of the sample synthesized at 210 °C for 20 h with potassium: sodium molar ratio of 20:80 using precursors containing K, Na, 45mol% Gd, 55mol% Yb and F. No signals from K are detected. (c)-(f) Typical TEM images of the samples synthesized for 20 h at 210 °C using precursors containing K, Na, 45mol% Gd, 55mol% Yb and F with different potassium: sodium molar ratios of 80:20, 60:40 and 40:60, respectively.
Reference