Understanding the high catalytic activity of propylsulfonic acid-functionalized periodic mesoporous benzenesilicas by high-resolution 1H solid-state NMR spectroscopy

Renée Siegel, a Eddy Domingues,b Rodolphe De Sousa,c François Jérôme,c Cláudia M. Morais,c Nicolas Bion,c Paula Ferreira,b* and Luis Mafra a,d*

aDepartment of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
bDepartment of Ceramics and Glass Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
cLaboratoire de Catalyse en Chimie Organique, University of Poitiers, 4 rue Michel Brunet, BP633 86022 Poitiers Cedex, France
dDepartamentos de Química Física y Analítica y Química Orgánica e Inorgánica, Universidad de Oviedo, 33006 Oviedo, Spain

*Corresponding authors. lmafra@ua.pt, +351 234370620 (L. Mafra) and pferreira@ua.pt, +351 234401419 (P. Ferreira). Fax: +351 234401470 (P. Ferreira; L. Mafra).

Electronic Supporting Information
Figure S1 – 1H MAS NMR spectra of propylsulphonic acid-functionalized ethyl PMO recorded at different deuterium exchange times. a) Without deuterium exchange; b) after 2 days, c) after 4 days and d) after 1 week of deuterium exchange.
Figure S2 – a) 2D 1H-1H DQ-SQ 1H MAS NMR and b) 2D 1H-1H spin-exchange NMR spectra of dehydrated propylsulphonic acid-functionalized PMO recorded at the same conditions as the NMR spectra shown in Figures 5 and 6. The NMR spectra were measured to four distinct acid loadings (indicated in the middle in mmol/g).