Supporting Information

Electrostatically controlled isolation of debundled single-walled carbon nanotubes from nanoplatelet dispersant

Xi Zhang, Hung-Jue Sue*, and Richi Nishimura

a Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, US. E-mail: lifefantasy@gmail.com
b Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, US. E-mail: hjsue@tamu.edu
c Corporate R&D Division, Kaneka Corporation, Osaka 530-8288, Japan. E-mail: Riichi_Nishimura@kn.keneka.co.jp

Element maps

![Element maps](image)

Fig. S1 Element maps of (a) SWCNT/ZrP hybrid and (b) SWCNTs isolated from SWCNT/ZrP/TX-100 mixture. The mapping was performed on an area of 1.3 mm x 2 mm to obtain overall chemical composition of the samples. Green dots: phosphorus; red dots: carbon; and gray background: aluminum substrate.
Quantification of concentration of well-dispersed SWCNT in aqueous solution

Fig. S2 (a) UV-vis spectra of aqueous solutions of TX-100, ZrP exfoliated by TBA+OH−, and SWCNT/ZrP/TX-100 at various concentrations. (b) Linear fit of absorption intensity at different wavelengths versus [SWCNT].

According to Beer–Lambert law, at a fixed wavelength (λ) of excitation light:

\[I = \varepsilon l c \]

where \(I \) = absorption intensity, \(\varepsilon \) = scaling constant, \(l \) = light path length, and \(c \) = solute concentration.

The equation describes the linear dependence of absorption intensity on solute concentration. Assuming that SWCNT remains well dispersed before and after ZrP removal and at \(l = 10 \) mm, we have

\[I_1 = \varepsilon_1 [SWCNT], \text{ at } \lambda_1 \]
\[I_2 = \varepsilon_2 [SWCNT], \text{ at } \lambda_2 \]

\[I_1 - I_2 = (\varepsilon_1 - \varepsilon_2) [SWCNT] = \varepsilon [SWNT], \varepsilon = \varepsilon_1 - \varepsilon_2 \]

Here, the difference between the absorption intensity at two different wavelengths is used to compensate the zero line shift of the spectrometer. Absorption spectra of aqueous solutions of TX-100, ZrP dispersion, and SWCNT/ZrP/TX-100 mixture with [SWCNT] = 20, 40, 60, 80 and 100 ppm are shown in Figure S2a. The linear fit of absorption intensity at \(\lambda_1 = 850 \) nm, denoted as \(I_1 \), absorption intensity at \(\lambda_2 = 1000 \) nm, denoted as \(I_2 \), and their intensity difference, denoted as \(I_1 - I_2 \), to [SWCNT] is shown in Figure S2b. The above wavelengths were chosen because the ZrP
dispersant, TX-100 and the accompanied ion species exhibit zero absorption at those wavelengths. The linear fit of I_1, I_2 and $I_1 - I_2$ as a function of [SWCNT] yield $R^2 = 0.99998$, 0.99997, and 0.99999, respectively. Thus, this method is reliable for measuring [SWCNT].

After centrifugation, the SWCNT-enriched supernatant does not possess the same volume before salt addition because the precipitated ZrP contains trapped water. Therefore, pure water was added to the supernatant to reach a known volume. By comparing the [SWCNT] (after SWCNT-ZrP separation) multiplied by the volume of the diluted supernatant against [SWCNT] (before separation) multiplied by the volume of the SWCNT/ZrP/TX-100 dispersion, the yield of SWCNT in the supernatant can be quantified precisely.