Supplementary Information

Engineering of metal-free bipyridine-based bridged silsesquioxanes for sustainable solid-state lighting

Julien Graffion1,2, Xavier Cattoën2, Vânia T. Freitas1, Rute A. S. Ferreira1, Michel Wong Chi Man2, Luís D. Carlos,1*

1Physics Department and CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
2Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM2-ENSCM-UM1, 34296 Montpellier, France.

Table and Figure captions

Table S1. Elemental composition (in %w) and calculated molar ratios for M5 and M6. The values indicated in parentheses indicate the theoretical ratio. The experimental errors are ±0.3% (absolute) for nitrogen and ±2% (relative error) for silicon.

Figure S1. FTIR spectra of M5 and M6.

Figure S2. 29Si solid-state CP-MAS NMR spectra of M5 and M6. The dotted line represents the fit using Gaussian functions in green solid lines.

Figure S3. 13C CP-MAS solid-state NMR spectra of M5 and M6 and 13C NMR of P5 and P6 in solution (DMSO-d$_6$). The asterisk and the paragraph symbol ($) correspond to the solvent (DMSO) and the carbon atoms of residual ethoxy groups, respectively.

Figure S4. XRD patterns of M5 and M6.

Figure S5. Thermogravimetric analysis of M6.

Figure S6. Excitation spectra of (a) M6 and (b) M5 monitored at 430 nm, 460 nm, 480/490 nm and 520 nm.
Table S1

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>%N</th>
<th>%Si</th>
<th>N/Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5</td>
<td>16.26</td>
<td>11.62</td>
<td>2.8 (3.0)</td>
</tr>
<tr>
<td>M6</td>
<td>16.92</td>
<td>10.92</td>
<td>3.1 (3.0)</td>
</tr>
</tbody>
</table>
Figure S1

![Graph showing T vs Wavenumber (cm⁻¹) with curves for M5 and M6]
Figure S2

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry
This journal is © The Royal Society of Chemistry 2012
Figure S3

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry
This journal is © The Royal Society of Chemistry 2012
Figure S4

The graph shows the intensity (arb. units) as a function of the scattering vector q (nm$^{-1}$) for samples M5 and M6. The intensity peaks at different values of q, indicating the presence of distinct structural features in these materials.
Figure S5

[Graph showing weight and derivative weight vs. temperature]