Supplementary data for
Selective and sensitive ratiometric detection of Hg^{2+} in 100% aqueous solution with triazole-based dansyl probe

Lok Nath Neupane, Joung Min Kim, Chuda Raj Lohani, and Keun-Hyeung Lee*

Bioorganic Chemistry Lab
Department of Chemistry, Inha University
253 Yonghyun-Dong, Nam-Gu, Incheon-City 402-751, Korea

leekh@inha.ac.kr

Contents:
1. Synthesis Scheme...S2
2. Figures..S3-S9
 2.1. Figure S1 HPLC and ESI mass spectrum of 3.................................S3
 2.2. Figure S2 A Job plot for 3 with Hg^{2+}..S4
 2.3. Figure S3 The intensity at (I_{533}) of 3 as the concentration of Hg^{2+}........S5
 2.4. Figure S4 Linear emission intensity change as a function of the concentration of Hg^{2+} ..S6
 2.5. Figure S5 Fluorescence spectra of 3 at different pH^{1}.....................S7
 2.6. Figure S6 H NMR spectra of 3 in the presence of Hg^{2+}...............S8
 2.7. Figure S7 UV/Vis absorption spectra of 3 in the presence of Hg^{2+}......S9
 2.8. Figure S8 ^1H NMR, ^13C NMR and IR spectra of 3......................S10
 2.9. Figure S9 IR spectra of 3..S11
Scheme S1. Solid phase synthesis of 2
Figure S1. HPLC chromatogram and ESI mass spectrum of 3.
Figure S2. Job plot for 3 with Hg$^{2+}$.
Figure S3. (a) The intensity ratio (I_{475}/I_{533}) of 3 (5 μM) (b) emission intensity change at 533 nm as the concentration of Hg^{2+} in 10 mM HEPES buffer solution at pH 7.0 (λ_{ex} = 330 nm, slit 10/5).
Figure S4. Linear emission intensity change at 530 nm as a function of the concentration of Hg$^{2+}$ ions.
Figure S5. Fluorescence spectra of 3 (5μM) in the absence and presence of Hg^{2+} (2 equiv) at pH (a) 3.5, (b) 4.0, (c) 4.5, (d) 5.5, (e) 6.5, (f) 7.4, (g) 8.5, (h) 9.5, (i) 10.5, and (j) 11.5 (λex=330 nm, slit=10/5).
Figure S6. 1H NMR spectra of 3 in the presence of Hg$^{2+}$ in D$_2$O/CD$_3$CN (4:1, v/v).
Figure S7. UV-vis absorption spectra of 3 upon gradual addition of Hg$^{2+}$ (0, 0.4, 0.8, 1.2, 1.6, and 2.0 equiv.) in 10 mM HEPES buffer solution at pH 7.0.
Figure S8. 1H-NMR and 13C-NMR spectrum of 3.
Figure S9. IR spectrum of 3.