Supporting Information

A Strategy for Significant Improvement of Strength of Semi-crystalline Polymers with the Aid of Nanoparticles

Ming Hui Wang,† Wen Hong Ruan,‡,* Yi Fu Huang,§ Lin Ye,§ Min Zhi Rong,‡,* Ming Qiu Zhang‡,*

†Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, DSAPM Lab, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China, ‡Materials Science Institute, Sun Yat-sen University, Guangzhou 510275, China, §School of AMME, University of Sydney, Australia

Fig. S1 Typical thermogravimetric curves of SiO₂-g-PBA prepared by irradiation polymerization.
Fig. S2 WAXD crystallinity of PP and its nanocomposites with 1 wt.% nano-SiO$_2$ as a function of drawing ratio.
Fig. S3 Storage modulus of solid-state drawn PP and SiO$_2$-g-PBA/PP composites
measured by DMA under 1 Hz. (a) Effect of nano-SiO$_2$ content (drawing ratio = 12) on temperature dependence of storage modulus, (b) effect of nano-SiO$_2$ content (drawing ratio = 12) on storage modulus at 25 ºC, (c) effect of drawing ratio (content of nano-SiO$_2$ = 1 wt.%) on temperature dependence of storage modulus, and (d) effect of drawing ratio (content of nano-SiO$_2$ = 1 wt.%) on storage modulus at 25 ºC.

Fig. S4 TEM micrographs of (a) SiO$_2$-g-PBA/PP before compression molding, (b) undrawn SiO$_2$-g-PBA/PP after compression molding, and (c) oriented SiO$_2$-g-PBA/PP composite (drawing ratio = 12). Nano-SiO$_2$ content = 1 wt.%. After solid-state drawing, specific alignment of the grafted nanoparticles appears and size of the nanoparticles agglomeration is reduced because of the strong filler/matrix interaction.