SUPPORTING INFORMATION

Dual photorecording on cholesteric azobenzene-containing LC polymer films using helix pitch photo-tuning and holographic grating recording

Alexander Ryabchun1*, Alexey Bobrovsky1, Anna Sobolewska2,3, Valery Shibaev1, Joachim Stumpe2

1 Faculty of Chemistry, Moscow State University, Lenin Hills 1, Moscow, 119991 Russia
2 Fraunhofer Institute for Applied Polymer Research, Geiselbergstr. 69, 14476 Potsdam, Germany
3 Institute of Physical and Theoretical Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland

* ryabchunmsu@gmail.com
Fig. S1. Absorbance spectra of chiral-photochromic dopant Sorb (dashed line) and azobenzene fragment of copolymer PAAzo8 (full line) in dichloromethane solution.

Fig. S2. Changes of the selective light reflection wavelength (λ_{max}) results from different irradiation time with UV light (313 nm, light intensity \sim1.2mW/cm2).

Fig. S3. The second-order diffraction efficiency changes during the grating recording process for different recording time: 1 hour (a) and 1 minute (b). In the last case the grating was recorded for a 1 minute till approximately maximum of 1st order diffraction efficiency, after that the Ar$^+$ laser was off and the system was still monitored by He-Ne laser.
Fig. S4. First-order diffraction efficiency dynamics of uniaxial oriented and non-oriented nematic film of copolymer PAAzo8, and of cholesteric mixture PAAzo8+Sorb (7 wt.%).