Electronic Supplementary Information for

Metalorganic chemical vapor deposition of aluminum oxynitride from dimethylaluminum hydride and oxygen: growth mode dependence and performance optimization

Gang He,a* Zhaoqi Sun,a Shiwei Shi,a Xiaoshuang Chen,b Jianguo Lv,c and Lide Zhangd

aSchool of Physics and Materials Science, Anhui University, Hefei 230039, People’s Republic of China.

bNational Laboratory for Infrared Physics, Chinese Academy of Sciences, Shanghai Institute of Technical Physics, 500 Yutian Road, Shanghai 200083, People’s Republic of China.

cDepartment of Physics and Electronic Engineering, Hefei Normal University, Hefei 230061, China;

dKey Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanostructure, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People’s Republic of China.

Email: hegang@ahu.edu.cn
Fig. S1 Deposition temperature dependent Al 2p, O 1s, and N 1s core level
photoemission spectra of as-processed AlO$_x$N$_y$ films grown on Si. All the samples were sputtered by Ar$^+$ for 1 min.

Fig. S2 Deposition temperature dependent composition distribution in as-processed AlO$_x$N$_y$ films. All the samples were sputtered by Ar$^+$ for 1 min.