Electronic Supporting Information (ESI)

Crystal Structure Characterizations, Optical and Photoluminescent Properties of Tunable Yellow- to Orange-Emitting Y₂(Ca,Sr)F₄S₂:Ce³⁺ Phosphors for Solid-State Lighting

Yun-Chen Wu,^a Yi-Chin Chen,^a Teng-Ming Chen^{*,a}, Chi-Shen Lee,^b Kuo-Ju Chen^c and Hao-Chung Kuo^c

^aPhosphors Research Laboratory, Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan

^bSolid-State Inorganic Applied Material Laboratory, Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan

^cSemiconductor Laser Technology Laboratory, Department of Photonics, National Chiao Tung University, Hsinchu 30010, Taiwan

E-mail: tmchen@mail.nctu.edu.tw; Phone: +886-3-5731695.

Fig. S1 The EDX spectra and SEM image of as-synthesized YCFS:Ce³⁺ phosphor.

Fig. S2 (a) The XRD patterns and (b) the structural parameters of the YCFS: Ce^{3+} , YCSFS-*y*: Ce^{3+} (*y* = 0.1, 0.25, 0.5, and 0.75), and YSFS: Ce^{3+} phosphors.

Fig. S3 Decay curves of Ce^{3+} emission in YCFS: Ce^{3+} , YCSFS-*y*: Ce^{3+} (*y* = 0.1, 0.25, 0.5, and 0.75), and YSFS: Ce^{3+} phosphors excited at 440-470 nm and monitored at 553-590 nm.

