Electronic supplementary information (ESI) available

Carbon Quantum Dots Embedded with Mesoporous Hematite Nanospheres as Efficient Visible Light-active Photocatalysts

Byong Yong Yu and Seung-Yeop Kwak*

Department of Materials Science and Engineering, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, Korea

* To whom correspondence should be addressed. E-mail: sykwak@snu.ac.kr.
Tel: +82-2-880-8365, Fax: +82-2-885-1748
Table S1. FWHM values of the main diffraction peaks and the crystallite size for mesoporous hematite with the respective diffraction planes.

<table>
<thead>
<tr>
<th>h</th>
<th>k</th>
<th>l</th>
<th>2θ (deg.)</th>
<th>d-spacing (nm)</th>
<th>Intensity (a.u.)</th>
<th>FWHM (2θ)</th>
<th>Crystallite size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>24.10</td>
<td>0.36</td>
<td>28.1</td>
<td>0.34</td>
<td>23.63</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>4</td>
<td>33.10</td>
<td>0.27</td>
<td>100.0</td>
<td>0.36</td>
<td>22.77</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>35.56</td>
<td>0.25</td>
<td>70.7</td>
<td>0.36</td>
<td>22.92</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>40.80</td>
<td>0.22</td>
<td>23.2</td>
<td>0.36</td>
<td>23.29</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>4</td>
<td>49.42</td>
<td>0.18</td>
<td>34.1</td>
<td>0.38</td>
<td>22.76</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
<td>54.02</td>
<td>0.17</td>
<td>45.1</td>
<td>0.38</td>
<td>23.21</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>62.40</td>
<td>0.15</td>
<td>28.4</td>
<td>0.38</td>
<td>24.17</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>63.98</td>
<td>0.14</td>
<td>25.4</td>
<td>0.38</td>
<td>24.38</td>
</tr>
</tbody>
</table>
Fig. S1 Chemical structure of CQD.
Fig. S2 CQDs optical image in water illuminated under (a) white (left; CQDs in water, right; water) and (b) UV light (left; CQDs in water, right; water).
Fig. S3 Photograph of mesoporous magnetite and hematite powders.
Fig. S4 FT-IR spectrum of (a) MH, (b) CQD, and (C) CQD/MH.
Fig. S5 FE-SEM images of (a) MH, and (b) CQD/MH (a more detailed view).
Fig. S6 TEM images of CQD/MH hybrid clusters.
Fig. S7 The intensity auto-correlation function (ACF), $G_2(\tau)$ for CQD/MH sample in DLS.

The second-order correlation function $G_2(\tau)$ can be expressed as a function of the first-order correlation function $G_1(\tau)$ according to the Siegert relation: $G_2(\tau) = B(1 + \beta G_1(\tau)^2)$, where B is the baseline constant and β is a coherence constant. In the case of a perfect setup, both equal unity. In the case of single-exponential decay, $G_1(\tau)$ can be expressed in terms of a typical decay rate Γ and time t: $G_1(\tau) = \exp(-\Gamma \tau)$. The apparent translational diffusion coefficient, D, is given by equation: $\Gamma = Dq^2$, where q is the magnitude of the scattering vector $q = 4\pi n \sin(\theta/2)/\lambda$, where n is the refractive index of the solvent, θ is the scattering angle, and λ is the wavelength of the incident light. For spherical particles, the translational diffusion coefficient can be related to the hydrodynamic radius, R, according to the Stokes-Einstein equation: $D = k_B T / 6\pi \eta R$, where D is the diffusion coefficient of the Brownian motion of spherical particles, k_B is the Boltzmann constant, T is the absolute temperature, and η is the viscosity of the solvent. The hydrodynamic radius distribution of
particles, $G(R)$ was estimated using the COTIN algorithm, which is conventionally used to determine the inverse Laplace transform of the measured amplitude autocorrelation function.1,2

Fig. S8 UV-visible spectra of the MH and CQD/MH.
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry

This journal is © The Royal Society of Chemistry 2012

Figure a

Absorbance vs. Wavelength (nm) for samples at different times: 0 min, 5 min, 10 min, 20 min, 30 min, 60 min, and 90 min.

Figure b

Absorbance vs. Wavelength (nm) for samples at different times: 0 min, 5 min, 10 min, 20 min, 30 min, 60 min, and 90 min.
Fig. S9 Absorption spectra of MB solution taken at different photocatalytic degradation times using (a) MH, (b) MH+H₂O₂ and (c) CQD/MH.
Fig. S10 Decolorization profiles of MB aqueous solution with visible light irradiation in the presence of the CQD/MH+H₂O₂.
Fig. S11 Schematic illustration of possible catalytic mechanism for CQD/MH under visible light.