Multi-coloration of polyurethane derivatives through click postfunctionalization, electrochemical oxidation, and Ag⁺ ion complexation

Yongrong Li^a and Tsuyoshi Michinobu*,b,c

^aDepartment of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan ^bGlobal Edge Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan ^cPrecursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Honcho 4-1-8, Kawaguchi-shi, Saitama 332-0012, Japan

*Correspondence Address:

Dr. Tsuyoshi Michinobu

Global Edge Institute, Tokyo Institute of Technology

2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan

Tel/Fax: +81-3-5734-3774, E-mail: michinobu.t.aa@m.titech.ac.jp

1. ¹H NMR spectra

Fig. S1 ¹H NMR spectra of **P2** and **P3** in $CDCl_3$ at 20 °C.

2. Thermogravimetric analysis (TGA)

Fig. S2 Thermogravimetric analysis of **P1-P3** at the heating rate of 10 °C min⁻¹ under flowing nitrogen.

3. Electrochemical oxidation

Fig. S3 ESR spectrum of the **P1** thin film on an ITO-coated glass plate by applying 0.25 V for 300 s. The spectrum was recorded one day after the oxidation. The ITO-coated glass plate did not show any ESR signals under the same conditions.

Fig. S4 UV-vis-near IR spectral change of **P1** solution in CHCl₃ containing 0.1 M $(nC_4H_9)_4NClO_4$ by applying a controlled potential of 0.25 V at 20 °C. Platinum mesh was used as a working electrode.

4. Colorimetry

Table S1 Summary of L*a*b* values for the polyurethane derivatives in CHCl₃ (300

 μ M repeat unit⁻¹)

	P1	P2	P3	$P2+Ag^+$	$P3+Ag^+$	P1 ^{+•}
L*	100	82.65	71.37	63.55	71.55	89.68
a*	0	23.13	-23.48	58.16	-7.86	-14.48
b*	0	76.52	31.72	13.54	50.51	-7.14

Fig. S5 Three-dimensional L*a*b* plots of values for the polyurethane thin films with the thickness of about 1 μ m: **P1**, **P2**, **P3**, **P2** complex with Ag⁺ ions (**P2**+Ag⁺), **P3** complex with Ag⁺ ions (**P3**+Ag⁺), and electrochemically-oxidized state of **P1** by 0.25 V application for 0.5 h (**P1**^{+•}).

Table S2 Summary of L*a*b* values for the polyurethane thin films^a

	P1	P2	P3	$P2+Ag^+$	$P3+Ag^+$	P1 ^{+•}
L*	99.86	94.12	95.85	93.56	95.27	99.88
a*	-0.36	6.11	-3.19	6.79	0.01	-4.31
b*	1.81	3.05	7.98	1.27	8.10	-2.54

^a Film thickness of about 1 μm.