Supplementary Information For

Optimization of Surface Coating on Fe₃O₄ Nanoparticles for High Performance Magnetic Hyperthermia Agent

Xiao Li Liu,¹,² Hai Ming Fan, ¹,* Jia Bao Yi,³ Yang Yang,² Eugene Shi Guang Choo,² Jun Min Xue,² Dai Di Fan,¹ and Jun Ding²,*

¹ Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi’an, Shaanxi 710069, China.

² Department of Materials Science & Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574.

³ School of Materials Science and Engineering, University of New South Wales, Kensington, NSW, 2052, Australia

* Corresponding author: Prof. Dr. H.M. Fan, nanofhm@gmail.com

Prof. Dr. J. Ding, msedingj@nus.edu.sg
Table S1. The measured saturation magnetizations, coercivities and remanances of the samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Saturation magnetization (emu/g)</th>
<th>Coercivity (Oe)</th>
<th>Remanance (emu/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unmodified 9 nm</td>
<td>57</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9nm@2000</td>
<td>51</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9nm@5000</td>
<td>49</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9nm@20000</td>
<td>46</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unmodified 19 nm</td>
<td>73</td>
<td>5.10</td>
<td>2.19</td>
</tr>
<tr>
<td>19nm@2000</td>
<td>59</td>
<td>6.20</td>
<td>3.48</td>
</tr>
<tr>
<td>19nm@5000</td>
<td>57</td>
<td>6.15</td>
<td>3.29</td>
</tr>
<tr>
<td>19nm@20000</td>
<td>54</td>
<td>6.13</td>
<td>3.14</td>
</tr>
<tr>
<td>Unmodified 31 nm</td>
<td>81</td>
<td>22.21</td>
<td>7.24</td>
</tr>
<tr>
<td>31nm@2000</td>
<td>63</td>
<td>44.76</td>
<td>10.23</td>
</tr>
<tr>
<td>31nm@5000</td>
<td>63</td>
<td>23.10</td>
<td>7.60</td>
</tr>
<tr>
<td>31nm@20000</td>
<td>62</td>
<td>23.22</td>
<td>7.70</td>
</tr>
</tbody>
</table>