Supporting information

Bioinspired synthesis of gadolinium-based hybrid nanoparticles as MRI blood pool contrast agents with high relaxivity

Bingbo Zhang a,*, 1, Hantao Jin b, 1, Yan Li c, Bingdi Chen a, Shiyuan Liu b, Donglu Shi a, d,*

a The Institute for Advanced Materials & Nano Biomedicine, Tongji University
School of Medicine, Shanghai 200092, China

b Department of Radiology, ChangZheng Hospital, the Second Military Medical University, No.415 Fengyang Road, Shanghai 200003, China.

c Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai 200040, China

d School of Energy, Environmental, Biological and Medical Engineering, University of Cincinnati, Cincinnati, OH 45221-0012

1 These authors contributed equally to this work.

Address correspondence to

bingbozhang@tongji.edu.cn

donlu.shi@uc.edu

Tel: (+)86-21-65983706-819.

Fax: (+) 86-21-65983706-0.
Supplementary Movie. MRA data set showing the aortic arch and the carotid arteries of a mouse. The movie consists of 36 individual images representing MIP views from different (equally spaced) angles. Reconstruction was performed using the General Electric Advantage Workstation 4.3. TR = 11.3 ms, TE = 2.1 ms, flip angle = 15°, FOV = 8 × 5.6 cm², matrix = 160 × 128.

Supplementary Figures and tables

![Supplementary figure](image-url)

Fig. S1. TEM image of as-prepared GH nanoparticles indicated by the red circles.¹
Fig. S2. Hydrodynamic diameter distribution of the GH nanoparticles.
Fig. S3. TEM images showing the good colloidal and chemical stability of the GH nanoparticles (indicated by red circles) with serum. (a) incubated with serum for 24 hours at 37 °C, and (b) incubated with serum for 25 days at 4 °C.1
Fig. S4. A-C shows the dynamic process of the MR signal transformation in the abdominal aorta (A), kidney (B) and liver (C) after post-injection from 0-240 minutes.
Fig. S5. MIPs from the 3D images acquired from the mouse intravenous-injected with GH nanoparticles; image is taken at baseline followed by the images at 5 and 120 minutes after intravenous injection.

Table S1. Chemical and Physical Properties of Various CAs

<table>
<thead>
<tr>
<th>CA</th>
<th>composition</th>
<th>(r_1) (mM⁻¹s⁻¹)</th>
<th>(r_2) (mM⁻¹s⁻¹)</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnevist</td>
<td>Gd</td>
<td>3.8(^b)</td>
<td>4.6(^b)</td>
<td>Extracellular CAs</td>
</tr>
<tr>
<td>Resovist(^2)</td>
<td>Fe(_2)O(_3) + Fe(_3)O(_4)</td>
<td>25.4(^b)</td>
<td>151.0(^b)</td>
<td>Liver-Specific</td>
</tr>
<tr>
<td>Vasovist</td>
<td>Gd</td>
<td>20.0(^c)</td>
<td>N/A</td>
<td>Blood Pool CAs</td>
</tr>
<tr>
<td>Gd (BDC)(_{1.5}) (H(_2)O)(_2)(^3)</td>
<td>Gd</td>
<td>35.8(^d)</td>
<td>55.6(^d)</td>
<td>N/A</td>
</tr>
<tr>
<td>USPIO(^a,4)</td>
<td>Fe(_2)O(_3)</td>
<td>21.6(^b)</td>
<td>44.1(^b)</td>
<td>Blood Pool CAs</td>
</tr>
<tr>
<td>SPGO(^5)</td>
<td>Gd(_2)O(_3)</td>
<td>4.8(^e)</td>
<td>16.9(^e)</td>
<td>N/A</td>
</tr>
<tr>
<td>PGP/dextran-K01(^6)</td>
<td>GdPO(_4)</td>
<td>13.9(^b)</td>
<td>15.0(^b)</td>
<td>N/A</td>
</tr>
<tr>
<td>Hybrid Gadolinium Oxide Nanoparticles(^7)</td>
<td>Gd(_2)O(_3)</td>
<td>8.8(^f)</td>
<td>11.4(^f)</td>
<td>Blood Pool CAs</td>
</tr>
<tr>
<td>Au@GdL(^8)</td>
<td>Gd</td>
<td>20.1(^c)</td>
<td>29.4(^c)</td>
<td>Blood Pool and lymph node CAs</td>
</tr>
<tr>
<td>HA–(EDA–DTPA–Gd)(^9)</td>
<td>Gd</td>
<td>5.0(^g)</td>
<td>N/A</td>
<td>Blood Pool CAs</td>
</tr>
<tr>
<td>Gd(OH)(_3) • Gd(_2)O(_3)/BSA</td>
<td>Gd (OH)(_3)+Gd(_2)O(_3)</td>
<td>15.0(^c)</td>
<td>19.7(^c)</td>
<td>Blood Pool and Liver-Specific CAs</td>
</tr>
</tbody>
</table>

\(^a\) USPIO was prepared from ferumoxides. \(^b\) The relaxivity data were measured at 0.47 T. \(^c\) The relaxivity data were measured at 1.5 T. \(^d\) The relaxivity data were
measured at 3.0 T. The relaxivity data were measured at 7.05 T. The relaxivity data were measured at 7.0 T. The relaxivity data were measured at 9.4 T.

References and Notes

1. The TEM photos were taken at high concentration of protein, which makes the background signals are high.