Electronic Supplementary Information for
“Hierarchical magnetic yolk/shell microspheres with mixed barium silicate and barium titanium oxide shells for microwave absorption enhancement”

Jiwei Liu, Junjie Xu, Renchao Che,* Huajun Chen, Zhengwang Liu and Feng Xia

Department of Material Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China.

*Address correspondence to rcche@fudan.edu.cn.
Fig. S1 TEM images of the Fe₃O₄@SiO₂ microspheres with different SiO₂ shell thicknesses: (a) ~81 nm, (b) ~100 nm, and (c) ~135 nm.

Fig. S2 TEM images of the Fe₃O₄@SiO₂@TiO₂ microspheres with different TiO₂ shell thicknesses: (a) ~11 nm, (b) ~23 nm, and (c) ~35 nm.

Fig. S3 High-magnification TEM images of the Fe₃O₄@SiO₂@TiO₂ and Fe₃O₄@BS/BTO microspheres.
Fig. S4 TEM images of the Fe$_3$O$_4$@SiO$_2$@TiO$_2$ microspheres with ~11 nm TiO$_2$ shell thickness (a) and the products synthesized using the Fe$_3$O$_4$@SiO$_2$@TiO$_2$ microspheres with ~11 nm TiO$_2$ shell thickness as the templates (b).

Fig. S5 N$_2$ adsorption-desorption isotherms of the Fe$_3$O$_4$ particles (a) and the Fe$_3$O$_4$@BS/BTO microspheres (b).