SUPPORTING INFORMATION for

Synthesis and targeting of PPP-type copolymers to breast cancer cells: Multifunctional platforms for imaging and diagnosis

Demet Goen Colak, Ioan Cianga, Dilek Odaci Demirkol, Ozge Kozgus, E. Ilker Medine, Serhan Sakarya, Perihan Unak, Suna Timur*, and Yusuf Yagci*

*Corresponding Authors:

**Prof. Y. Yagci**
Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey, E-mail: yusuf@itu.edu.tr

**Prof. S. Timur**
Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100, Izmir, Turkey, E-mail: suna.timur@ege.edu.tr
Spectral data for macromonomer and PPP copolymer;

*Figure S1.* $^1$H-NMR spectral data: (a) macromonomer, and (b) PPP copolymer in CDCl$_3$. 
Cytotoxicity of PPP

**Figure S2.** Time dependent cell viability of MCF7 cells. 5x105 cells/mL in the presence of PPP (0.05 mg/mL in the medium) and PBS (pH 7.4, 50 mM) as a function of time by typical MTT assay. Error bars represent the standard deviation of three measurements.
Fluorescence spectra of PPP after conjugation of Anti-MTDH, Lec and Anti-MTDH-Lec

![Fluorescence spectra graph](image)

**Figure S3.** Fluorescence spectra of PPP after bioconjugation. Anti-MTDH, Lec and Anti-MTDH-Lec conjugation (in PBS pH 7.4), the excitation wavelength is 280 nm.