Electronic Supplementary Information

Facile Synthesis of Nanocrystalline-Assembled Bundle-like CuO Nanostructure with High Rate Capacities and Enhanced Cycling Stability as an Anode Material for Lithium-ion Batteries

Linlin Wang, a Wei Cheng, a Huaxu Gong, a Caihua Wang, a Dake Wang, a Kaibin Tang*a and Yitai Qianab

Division of Nanomaterials and Chemistry Hefei National Laboratory for Physical Sciences at the Microscale. Department of Chemistry, University of Science and Technology of China, Hefei 230026, P.R. China. E-mail: kbtang@ustc.edu.cn. Phone: 86-551-3601791.

Fig. S1. SEM and TEM images of the precursor synthesized without C₆H₈O₇·H₂O: (a) SEM image; (b) TEM image.
Fig. S2. SEM images of bundle-like Cu(OH)$_2$ obtained with different amounts of NaOH:

(a) 5.0 mmol; (b) 9.0 mmol; (c) 12.5 mmol; (d) 50.0 mmol.

Fig. S3. The SEM image of the both electrodes: (a) after grinding; (b) without grinding.
Fig. S4. (a) Selected discharge/charge profiles for the bundle-like CuO at a current rate at 0.3 C; (b) Cycling performances of CuO electrode at current rate at 0.3 C, 1 C and 2 C, respectively. (From the 2nd cycle to the 50th cycle).

Fig. S5. The XRD patterns for the CuO electrodes with structure destruction after discharge to 0.001 V and charged to 3.0 V: (a) Charge (14th cycle); (b) Discharge (15th cycle).

Fig. S6. The XRD patterns for the CuO electrodes with bundle-like structure after discharge to 0.001 V and charged to 3.0 V: (a) Discharge (41th cycle); (b) Charge (24 th cycle).
Fig. S7. (a) CuO nanoparticles obtained from grinding the bundle-like CuO (disassembled) : V = 6 mL, m = 6.310 g, \(\rho = 1.05 \text{ g cc}^{-1} \); (b) the bundle-like CuO (assembled) : V = 10.5 mL, m = 6.324 g, \(\rho = 0.602 \text{ g cc}^{-1} \).