Supporting Information for

High strength composite fibres from polyester filled with nanotubes and graphene

Umar Khan, Karen Young, Arlene O’Neill and Jonathan N Coleman*

Centre for Research on Adaptive Nanostructures and Nanodevices and School of Physics, Trinity College Dublin, Dublin 2, Ireland

*colemaj@tcd.ie

Volume fraction dependence for SWNT-PET composites

Figure S1: Young’s modulus and ultimate tensile strength as a function of nanotube volume fraction for fibres with a range of mean diameters from 5.0 to 8.1 μm.
Figure S2: Strain at break and tensile toughness as a function of nanotube volume fraction for fibres with a range of mean diameters from 5.0 to 8.1 μm.

TEM analysis of Graphene Dispersions

It is possible to investigate the graphene dispersion using transmission electron microscopy (TEM) by dropping a small quantity of the dispersion onto holey carbon grids. Representative TEM images are shown in Figure S3.

Figure S3: TEM images of exfoliated graphene multilayers deposited from the dispersion used to prepare the PET-graphene composite melts.
TEM flake size statistics can also be found for the graphene dispersion. The flake thickness, \(N \), was measured using the edge counting method, described in detail in Small 6, 864 (see figure S4).

![Histograms of graphene flake statistics](image)

Figure S4: TEM statistics of graphene flakes centrifuged at 1000rpm where \(w \) is the width of the flake, \(L \) is the length and \(n \) is the number of graphene layers.

Raman analysis of Graphene Dispersions

Raman spectra for the graphene dispersion used for this work are shown in Figure S5. A reference graphite powder is shown also as a comparison. Here the D band (\(\sim 1300\text{cm}^{-1} \)) is indicative of the presence of defects. However, we note that for small flakes such as those observed here, significant D bands can come simply from the presence of flake edges (Small 6, 864).
Figure S5: Raman spectra of A) graphite powder and B) the dispersed graphene (after filtration to form a film).

Volume fraction dependence for Graphene-PET composites

Figure S6: Young’s modulus and strength as a function of graphene volume fraction for fibres with a range of mean diameters from 7 to 13 μm.
Figure S7: Strain at break and tensile toughness as a function of graphene volume fraction for fibres with a range of mean diameters from 7 to 13 μm.