Facile preparation of porous NiTiO$_3$ nanorods with enhanced visible-light-driven photocatalytic performance

Yang Qu,$^{1,2}$ Wei Zhou,$^1$ Zhiyu Ren,$^1$ Shichao Du,$^1$ Xiangying Meng,$^1$ Guohui Tian,$^1$ Kai Pan,$^1$
Guofeng Wang,$^1$ and Honggang Fu$^{1,2,*}$

1 Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 P. R. China

2 State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China

Corresponding author E-mail: fuhg@vip.sina.com, Tel.: +86 451 8660 4330, Fax: +86 451 8667 3647

Figure S1. TG curve of the as-prepared NiTiO$_3$ nanorod.
Figure S2. SEM images of the surface of the obtained NiTiO₃ nanorod before and after calcination

Figure S3. The pore size distribution of NiTiO₃ nanorod calcined at 600 °C for 2 hours

Figure S4. The powder X-ray diffraction (XRD) pattern of NiTiO₃ nanoparticle obtained by sol-gel method.
Figure S5. TEM and HRTEM images of NiTiO$_3$ nanoparticle obtained by *sol-gel* method.

Figure S6. UV spectra of aqueous solutions of nitrobenzene after photocatalysis of NiTiO$_3$ nanorod for different times.

Figure S7. The adsorption and photocatalytic degradation of NB by NiTiO$_3$ nanorods, NiTiO$_3$ nanoparticles and P25 with the same weight under solar irradiation.
Figure S8. The adsorption and photocatalytic degradation of P25 with the same weight under visible-light irradiation.