Multi-Functional Metal-Organic Frameworks Assembled from a Tripodal Organic Linker

Sérgio M. F. Vilela,¹,² Duarte Ananias,¹ Ana C. Gomes,¹ Anabela A. Valente,¹ Luís D. Carlos,³ José A. S. Cavaleiro,² João Rocha,¹ João P. C. Tomé² and Filipe A. Almeida Paz¹,*

A contribution from

¹ Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
² Department of Chemistry, QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
³ Department of Physics, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal

Electronic Supporting Information

To whom correspondence should be addressed:

Dr. Filipe A. Almeida Paz
Department of Chemistry, CICECO
University of Aveiro
3810-193 Aveiro
Portugal

E-mail: filipe.paz@ua.pt
FAX: +351 234 370084
Telephone: +351 234 247126
Table of Contents

1. Characterization of the Organic PBU
 1.1 – Hexaethyl(benzene-1,3,5-triyltris(methylene))tris(phosphonate), 13C NMR S3
 1.2 – (Benzene-1,3,5-triyltris(methylene))triphosphonic Acid
 1H NMR .. S4
 13C NMR .. S5
 31P NMR .. S6

2. Milder Hydrothermal Synthetic Conditions .. S7

3. Electron Microscopy Studies: EDS Mapping
 3.1 – $[(La_{0.95}Eu_{0.05})_2(H_3bmt)_2(H_2O)_2] \cdot H_2O$.. S8
 3.2 – $[(La_{0.95}Tb_{0.05})_2(H_3bmt)_2(H_2O)_2] \cdot H_2O$.. S9

4. Solid-State NMR: $[La_2(H_3bmt)_2(H_2O)_2] \cdot H_2O$
 4.1 – 13C $^\{1\}H$ CP MAS ... S10
 4.2 – 31P MAS ... S11

5. FT-IR Spectroscopy .. S12

6. Thermogravimetry .. S13

7. Photoluminescence
 7.1 – Eu$^{3+}$ Materials ... S14
 7.2 – Tb$^{3+}$ Materials ... S15
 7.3 – La$^{3+}$ Material ... S17
 7.4 – Quantum Efficiency and Coordinated Water Molecules Calculations S19

8. References ... S20
1. Characterization of the Organic PBU

1.1 – Hexaethyl(benzene-1,3,5-triyltris(methylene))tris(phosphonate)

Figure S1. 13C NMR spectrum of the intermediate molecule hexaethyl(benzene-1,3,5-triyltris(methylene))tris(phosphonate) in CDCl$_3$.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry
This journal is © The Royal Society of Chemistry 2012
1.2 – (Benzene-1,3,5-triyltris(methylene))triposphonic Acid

Figure S2. 1H NMR spectrum of the target molecule (benzene-1,3,5-triyltris(methylene))triposphonic acid in DMSO-d_6.
Figure S3. 13C NMR spectrum of the target molecule (benzene-1,3,5-triyltri(methylene))triphosphonic acid in DMSO-d_6.
Figure S4. 31P NMR spectrum of the target molecule (benzene-1,3,5-triyltris(methylene))triphosphonic acid in DMSO-d_6.
2. Milder Hydrothermal Synthetic Conditions

Figure S5. SEM images of the crystal morphology of the $[\text{La}_2(\text{Hbmt})_2(\text{H}_2\text{O})_2]\cdot\text{H}_2\text{O}$ (1) material prepared at mild temperatures (100 ºC).
3. Electron Microscopy Studies: EDS Mapping

3.1 – [(La$_{0.95}$Eu$_{0.05}$)$_2$H$_3$bmt)$_2$(H$_2$O)$_2$]\cdotH$_2$O

Figure S6. Electron microscopy EDS mapping studies of a portion of the [(La$_{0.95}$Eu$_{0.05}$)$_2$H$_3$bmt)$_2$(H$_2$O)$_2$]\cdotH$_2$O (5) material.
3.2 – [(La$_{0.95}$Tb$_{0.05}$)$_2$(H$_3$bmt)$_2$(H$_2$O)$_2$]·H$_2$O

Figure S7. Electron microscopy EDS mapping studies of a portion of the [(La$_{0.95}$Tb$_{0.05}$)$_2$(H$_3$bmt)$_2$(H$_2$O)$_2$]·H$_2$O (6) material.
4. Solid-State NMR: \([\text{La}_2(\text{H}_3\text{bmt})_2(\text{H}_2\text{O})_2]\cdot\text{H}_2\text{O}\)

4.1 – \(^{13}\text{C}\{^1\text{H}\}\) CP MAS

Figure S8. \(^{13}\text{C}\{^1\text{H}\}\) CP MAS spectrum of \([\text{La}_2(\text{H}_3\text{bmt})_2(\text{H}_2\text{O})_2]\cdot\text{H}_2\text{O}\) (1). Spinning sidebands are depicted by an asterisk.
4.2 – 31P MAS

Figure S9. 31P MAS spectrum of [La$_2$(H$_3$btmt)$_2$(H$_2$O)$_2$].H$_2$O (I). Spinning sidebands are depicted by an asterisk. Peak deconvolution and integration throughout the entire spectral range (i.e., including the spinning sidebands) gives a ratio of ca. 1.00 : 1.04 : 1.01 for the isotropic resonances at ca. 15.3, 19.7 and 23.4 ppm, respectively, which is in perfect agreement with the crystal structure determination of the same material.
5. FT-IR Spectroscopy

Figure S10. FT-IR spectra of the [Ln₂(H₃bmt)₂(H₂O)₂]·H₂O materials [where Ln³⁺ = La³⁺ (1), Ce³⁺ (2), Pr³⁺ (3), Nd³⁺ (4), (La₀.95Eu₀.05)³⁺ (5) and (La₀.95Tb₀.05)³⁺ (6)]. The most relevant and diagnostic bands associated with the structural features of the materials are depicted.
6. Thermogravimetry

Figure S11. Thermograms of the [Ln$_2$(H$_3$bmt)$_2$(H$_2$O)$_2$]·H$_2$O materials [where Ln$^{3+}$ = Ce$^{3+}$ (2), Pr$^{3+}$ (3), Nd$^{3+}$ (4), (La$_{0.95}$Eu$_{0.05}$)$_3$$^{3+}$ (5) and (La$_{0.95}$Tb$_{0.05}$)$_3$$^{3+}$ (6)].
7. Photoluminescence

7.1 – Eu$^{3+}$ Materials

![Figure S12](image_url)

$\tau_{\text{5-dehyd}} = 1.60 \pm 0.01 \text{ ms}$

$\tau_5 = 0.60 \pm 0.01 \text{ ms}$

Figure S12. 5D$_0$ decay curves of [(La$_{0.95}$Eu$_{0.05}$)$_2$(H$_3$bmt)$_2$(H$_2$O)$_2$]·H$_2$O (5) (black) and [(La$_{0.95}$Eu$_{0.05}$)(H$_3$bmt)] (5-dehyd) (red), acquired at 298 K while monitoring the emission at 611.5 and 612.1 nm, respectively. Curves were fitted by using single exponential decay functions. The excitation was performed at 393 nm.
7.2 – Tb$^{3+}$ Materials

Figure S13. Excitation spectra of $[(\text{La}_{0.95}\text{Tb}_{0.05})_2(\text{H}_3\text{bmt})_2(\text{H}_2\text{O})_2]\cdot\text{H}_2\text{O}$ (6) (black line) and $[(\text{La}_{0.95}\text{Tb}_{0.05})(\text{H}_3\text{bmt})]$ (6-dehyd) (red line) at 298 K while monitoring the Tb$^{3+}$ emission at 542 nm.

Figure S14. Ambient temperature (298 K) emission spectra of $[(\text{La}_{0.95}\text{Tb}_{0.05})_2(\text{H}_3\text{bmt})_2(\text{H}_2\text{O})_2]\cdot\text{H}_2\text{O}$ (6) and $[(\text{La}_{0.95}\text{Tb}_{0.05})(\text{H}_3\text{bmt})]$ (6-dehyd) with excitation at 280 nm: black line, 6 at ambient pressure; red line, 6 after dehydration (6-dehyd) at 450 K under a vacuum of 5×10^{-6} mbar.
Figure S15. 5D$_4$ decay curves of $[(La_{0.95}Tb_{0.05})_2(H_3bmt)_2(H_2O)_2] \cdot H_2O$ (6) (black) and $[(La_{0.95}Tb_{0.05})(H_3bmt)]$ (6-dehyd) (red) acquired at 298 K while monitoring the emission at 542 nm. Data points were fitted using single exponential decay functions. The excitation was performed at 280 nm.
7.3 – La$^{3+}$ Material

Figure S16. Excitation and emission spectra of [La$_2$(H$_3$btme)$_2$(H$_2$O)$_2$]·H$_2$O (1) recorded at 12 K and 298 K. Stationary state spectra are depicted with solid lines; dashed lines represent time-resolved emission spectra. For the excitation spectra (stationary state) the emission was detected at 305 nm (black lines) and at 435 nm (blue lines). For the emission stationary state spectra (red lines) the excitation was fixed at 270 nm. Time-resolved emission spectra: dashed green line, initial delay 0.01 ms and integration time of 0.05 ms ($\lambda_{\text{Exc.}}=270$ nm); dashed black line, initial delay 0.2 ms and integration time of 30 ms ($\lambda_{\text{Exc.}}=270$ nm); dashed blue line, initial delay 0.2 ms and integration time of 30 ms ($\lambda_{\text{Exc.}}=310$ nm).
Figure S17. Time decay curves of [La₂(H₃bmt)₂(H₂O)₃]·H₂O (1) acquired at 12 K. (a) Green squares: fluorescence emission detected at 287 nm with the excitation fixed at 270 nm. (b) Black squares: phosphorescence emission detected at 385 nm with the excitation fixed at 270 nm. Blue circles: emission detected at 435 nm with excitation fixed at 300 nm. Green and black lines correspond to data fits using single exponential decay functions. The blue line corresponds to a data fit using a bi-exponential decay function. Please note: because the employed phosphorometer is unable to discriminate time values lower than 10 µs, the fitted fluorescence value and its error (calculated from the fit) can only be considered as a rough estimation of the real fluorescence lifetime.
7.4 – Quantum Efficiency and Coordinated Water Molecules Calculations

Based on the emission spectra, 5D_0 lifetimes and empirical radiative and non-radiative transition rates, the 5D_0 quantum efficiency, q, has been determined for compounds 5 and 5-dehyd, establishing the effect of the coordinated water molecules on the reduction of the emission efficiency. Assuming that only non-radiative and radiative processes are involved in the depopulation of the 5D_0 state, q is given by:

$$q = \frac{k_r}{k_r + k_{nr}}$$ \hspace{1cm} (Eq. 1)

where k_r and k_{nr} are the radiative and non-radiative transition probabilities, respectively, and $k_{exp} = \tau_{exp}^{-1}$ is the experimental transition probability. The emission intensity, I, taken as the integrated intensity S of the emission lines for the $^5D_0 \rightarrow ^7F_{0,0}$ transitions, is given by:

$$I_{i \rightarrow j} = \hbar \omega_{i \rightarrow j} A_{i \rightarrow j} N_i \equiv S_{i \rightarrow j}$$ \hspace{1cm} (Eq. 2)

where i and j represent the initial (5D_0) and final ($^7F_{0,0}$) levels, respectively, $\hbar \omega_{i \rightarrow j}$ is the transition energy, $A_{i \rightarrow j}$ the Einstein coefficient of spontaneous emission and N_i the population of the 5D_0 emitting level. Because the $^5D_0 \rightarrow ^7F_{5,6}$ transitions are not observed experimentally, their influence on the depopulation of the 5D_0 excited state may be neglected and, thus, the radiative contribution is estimated based only on the relative intensities of the $^5D_0 \rightarrow ^7F_{0,4}$ transitions. The emission integrated intensity, S, of the $^5D_0 \rightarrow ^7F_{0,4}$ transitions has been measured for compounds 5 and 5-dehyd at 298 K.

Because the $^5D_0 \rightarrow ^7F_1$ transition does not depend on the local ligand field of the Eu$^{3+}$ ions (due to its dipolar magnetic nature) it may be used as a reference for the whole spectrum, in vacuo $A(^5D_0 \rightarrow ^7F_1)=14.65$ s$^{-1}$, and k_r is given by:

$$k_r = A_{0 \rightarrow 1} \frac{\hbar \omega_{0 \rightarrow 1}}{S_{0 \rightarrow 1}} \sum_{J=0}^{4} \frac{S_{0-J}}{\hbar \omega_{0-J}}$$ \hspace{1cm} (Eq. 3)

where $A_{0,J}$ is the Einstein coefficient of spontaneous emission between the 5D_0 and the 7F_J levels. An average index of refraction of 1.5 was considered for both samples, leading to $A(^5D_0 \rightarrow ^7F_1)=50$ s$^{-1}$. The number of water molecules (n_w) coordinated to Eu$^{3+}$ and Tb$^{3+}$ may be determined using the empirical formula of Kimura & Kato (with an intrinsic error of ±0.25) using the ambient temperature lifetimes of the as-prepared and dehydrated materials:

$$n_w = A \left(\frac{1}{\tau_{exp}} \right) - B$$ \hspace{1cm} (Eq. 4)

where $A = 1.1$ and $B = 0.71$ for Eu$^{3+}$, and $A = 4.0$ and $B = 1.0$ for Tb$^{3+}$.

Electronic Supporting Information | S19
8. References

