Multi-Functional Metal-Organic Frameworks Assembled from a Tripodal Organic Linker

Sérgio M. F. Vilela,^{1,2} Duarte Ananias,¹ Ana C. Gomes,¹ Anabela A. Valente,¹ Luís D. Carlos,³ José A. S. Cavaleiro,² João Rocha,¹ João P. C. Tomé² and Filipe A. Almeida Paz^{1,*}

A contribution from

¹ Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal ² Department of Chemistry, QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal ³ Department of Physics, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal

Electronic Supporting Information

To whom correspondence should be addressed:

Dr. Filipe A. Almeida Paz Department of Chemistry, CICECO University of Aveiro 3810-193 Aveiro Portugal

E-mail: filipe.paz@ua.pt FAX: +351 234 370084 Telephone: +351 234 247126 Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is © The Royal Society of Chemistry 2012 *Vilela et al.* – Manuscript submitted to *Journal of Materials Chemistry*

Table of Contents

1. Characterization of the Organic PBU	
1.1 – Hexaethyl(benzene-1,3,5-triyltris(methylene))tris(phosphonate), ¹³ C NMR	S3
1.2 – (Benzene-1,3,5-triyltris(methylene))triphosphonic Acid	
¹ H NMR	S4
¹³ C NMR	S5
³¹ P NMR	S6
2. Milder Hydrothermal Synthetic Conditions	S7
3. Electron Microscopy Studies: EDS Mapping	
$3.1 - [(La_{0.95}Eu_{0.05})_2(H_3bmt)_2(H_2O)_2] \cdot H_2O$	S8
$3.2 - [(La_{0.95}Tb_{0.05})_2(H_3bmt)_2(H_2O)_2] \cdot H_2O$	S9
4. Solid-State NMR: [La ₂ (H ₃ bmt) ₂ (H ₂ O) ₂]·H ₂ O	
$4.1 - {}^{13}C{}^{1}H{} CP MAS$	S10
$4.2 - {}^{31}PMAS$	S11
5. FT-IR Spectroscopy	S12
6. Thermogravimetry	S13
7. Photoluminescence	
7.1 – Eu ³⁺ Materials	S14
$7.2 - Tb^{3+}$ Materials	S15
$7.3 - La^{3+}$ Material	S17
7.4 – Quantum Efficiency and Coordinated Water Molecules Calculations	S19
8. References	S20

Vilela et al. - Manuscript submitted to Journal of Materials Chemistry

1. Characterization of the Organic PBU

1.1 – Hexaethyl(benzene-1,3,5-triyltris(methylene))tris(phosphonate)

Figure S1. ¹³C NMR spectrum of the intermediate molecule hexaethyl(benzene-1,3,5-triyltris(methylene))tris(phosphonate) in CDCl₃.

Electronic Supporting Information | S3

Vilela et al. - Manuscript submitted to Journal of Materials Chemistry

1.2 – (Benzene-1,3,5-triyltris(methylene))triphosphonic Acid

Figure S2. ¹H NMR spectrum of the target molecule (benzene-1,3,5-triyltris(methylene))triphosphonic acid in DMSO-*d*₆.

Electronic Supporting Information | S4

Vilela et al. - Manuscript submitted to Journal of Materials Chemistry

Figure S3. ¹³C NMR spectrum of the target molecule (benzene-1,3,5-triyltris(methylene))triphosphonic acid in DMSO-*d*₆.

Electronic Supporting Information | **S5**

Vilela et al. - Manuscript submitted to Journal of Materials Chemistry

Figure S4. ³¹P NMR spectrum of the target molecule (benzene-1,3,5-triyltris(methylene))triphosphonic acid in DMSO-*d*₆.

Vilela et al. - Manuscript submitted to Journal of Materials Chemistry

2. Milder Hydrothermal Synthetic Conditions

100 °C + 48 h

100 °C + 72 h

Figure S5. SEM images of the crystal morphology of the $[La_2(H_3bmt)_2(H_2O)_2] \cdot H_2O$ (1) material prepared at mild temperatures (100 °C).

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is © The Royal Society of Chemistry 2012 Vilela et al. – Manuscript submitted to Journal of Materials Chemistry

3. Electron Microscopy Studies: EDS Mapping

$3.1 - [(La_{0.95}Eu_{0.05})_2(H_3bmt)_2(H_2O)_2] \cdot H_2O$

Figure S6. Electron microscopy EDS mapping studies of a portion of the $[(La_{0.95}Eu_{0.05})_2(H_3bmt)_2(H_2O)_2] \cdot H_2O$ (5) material.

Vilela et al. - Manuscript submitted to Journal of Materials Chemistry

$3.2 - [(La_{0.95}Tb_{0.05})_2(H_3bmt)_2(H_2O)_2]\cdot H_2O$

Figure S7. Electron microscopy EDS mapping studies of a portion of the $[(La_{0.95}Tb_{0.05})_2(H_3bmt)_2(H_2O)_2] \cdot H_2O$ (6) material.

Vilela et al. - Manuscript submitted to Journal of Materials Chemistry

4. Solid-State NMR: [La₂(H₃bmt)₂(H₂O)₂]·H₂O 4.1 – ¹³C{¹H} CP MAS

Figure S8. ¹³C{¹H} CP MAS spectrum of $[La_2(H_3bmt)_2(H_2O)_2] \cdot H_2O$ (1). Spinning sidebands are depicted by an asterisk.

Vilela et al. - Manuscript submitted to Journal of Materials Chemistry

Figure S9. ³¹P MAS spectrum of $[La_2(H_3bmt)_2(H_2O)_2] \cdot H_2O$ (1). Spinning sidebands are depicted by an asterisk. Peak deconvolution and integration throughout the entire spectral range (*i.e.*, including the spinning sidebands) gives a ratio of *ca*. 1.00 : 1.04 : 1.01 for the isotropic resonances at *ca*. 15.3, 19.7 and 23.4 ppm, respectively, which is in perfect agreement with the crystal structure determination of the same material.

Vilela et al. - Manuscript submitted to Journal of Materials Chemistry

5. FT-IR Spectroscopy

Figure S10. FT-IR spectra of the $[Ln_2(H_3bmt)_2(H_2O)_2] \cdot H_2O$ materials [where $Ln^{3+} = La^{3+}$ (1), Ce^{3+} (2), Pr^{3+} (3), Nd^{3+} (4), $(La_{0.95}Eu_{0.05})^{3+}$ (5) and $(La_{0.95}Tb_{0.05})^{3+}$ (6)]. The most relevant and diagnostic bands associated with the structural features of the materials are depicted.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is © The Royal Society of Chemistry 2012 Vilela et al. – Manuscript submitted to Journal of Materials Chemistry

6. Thermogravimetry

Figure S11. Thermograms of the $[Ln_2(H_3bmt)_2(H_2O)_2] \cdot H_2O$ materials [where $Ln^{3+} = Ce^{3+}$ (2), Pr^{3+} (3), Nd^{3+} (4), $(La_{0.95}Eu_{0.05})^{3+}$ (5) and $(La_{0.95}Tb_{0.05})^{3+}$ (6)].

Vilela et al. - Manuscript submitted to Journal of Materials Chemistry

7. Photoluminescence

7.1 – Eu³⁺ Materials

Figure S12. ${}^{5}D_{0}$ decay curves of $[(La_{0.95}Eu_{0.05})_{2}(H_{3}bmt)_{2}(H_{2}O)_{2}] \cdot H_{2}O$ (5) (black) and $[(La_{0.95}Eu_{0.05})(H_{3}bmt)]$ (5-dehyd) (red), acquired at 298 K while monitoring the emission at 611.5 and 612.1 nm, respectively. Curves were fitted by using single exponential decay functions. The excitation was performed at 393 nm.

Vilela et al. - Manuscript submitted to Journal of Materials Chemistry

7.2 – Tb³⁺ Materials

Figure S13. Excitation spectra of $[(La_{0.95}Tb_{0.05})_2(H_3bmt)_2(H_2O)_2] \cdot H_2O$ (6) (black line) and $[(La_{0.95}Tb_{0.05})(H_3bmt)]$ (6-dehyd) (red line) at 298 K while monitoring the Tb³⁺ emission at 542 nm.

Figure S14. Ambient temperature (298 K) emission spectra of $[(La_{0.95}Tb_{0.05})_2(H_3bmt)_2(H_2O)_2] \cdot H_2O$ (6) and $[(La_{0.95}Tb_{0.05})(H_3bmt)]$ (6-dehyd) with excitation at 280 nm: black line, 6 at ambient pressure; red line, 6 after dehydration (6-dehyd) at 450 K under a vacuum of 5×10^{-6} mbar.

Figure S15. ${}^{5}D_{4}$ decay curves of $[(La_{0.95}Tb_{0.05})_{2}(H_{3}bmt)_{2}(H_{2}O)_{2}] \cdot H_{2}O$ (6) (black) and $[(La_{0.95}Tb_{0.05})(H_{3}bmt)]$ (6-dehyd) (red) acquired at 298 K while monitoring the emission at 542 nm. Data points were fitted using single exponential decay functions. The excitation was performed at 280 nm.

Vilela et al. - Manuscript submitted to Journal of Materials Chemistry

7.3 – La³⁺ Material

Figure S16. Excitation and emission spectra of $[La_2(H_3bmt)_2(H_2O)_2] \cdot H_2O$ (1) recorded at 12 K and 298 K. Stationary state spectra are depicted with solid lines; dashed lines represent time-resolved emission spectra. For the excitation spectra (stationary state) the emission was detected at 305 nm (**black** lines) and at 435 nm (**blue** lines). For the emission stationary state spectra (**red** lines) the excitation was fixed at 270 nm. Time-resolved emission spectra: dashed **green** line, initial delay 0.01 ms and integration time of 0.05 ms ($\lambda_{Exc.}$ =270 nm); dashed **black** line, initial delay 0.2 ms and integration time of 30 ms ($\lambda_{Exc.}$ =270 nm); dashed **blue** line, initial delay 0.2 ms and integration time of 30 ms ($\lambda_{Exc.}$ =310 nm).

Vilela et al. - Manuscript submitted to Journal of Materials Chemistry

Figure S17. Time decay curves of $[La_2(H_3bmt)_2(H_2O)_2] \cdot H_2O$ (1) acquired at 12 K. (a) Green squares: fluorescence emission detected at 287 nm with the excitation fixed at 270 nm. (b) **Black** squares: phosphorescence emission detected at 385 nm with the excitation fixed at 270 nm. **Blue** circles: emission detected at 435 nm with excitation fixed at 300 nm. Green and **black** lines correspond to data fits using single exponential decay functions. The **blue** line corresponds to a data fit using a bi-exponential decay function. *Please note*: because the employed phosphorometer is unable to discriminate time values lower than 10 µs, the fitted fluorescence value and its error (calculated from the fit) can only be considered as a rough estimation of the real fluorescence lifetime.

Vilela et al. - Manuscript submitted to Journal of Materials Chemistry

7.4 – Quantum Efficiency and Coordinated Water Molecules Calculations

Based on the emission spectra, ${}^{5}D_{0}$ lifetimes and empirical radiative and non-radiative transition rates, the ${}^{5}D_{0}$ quantum efficiency, q, ${}^{1\cdot3}$ has been determined for compounds **5** and **5-dehyd**, establishing the effect of the coordinated water molecules on the reduction of the emission efficiency. Assuming that only non-radiative and radiative processes are involved in the depopulation of the ${}^{5}D_{0}$ state, q is given by:

$$q = \frac{k_r}{k_r + k_{nr}} \quad (\text{Eq. 1})$$

where k_r and k_{nr} are the radiative and non-radiative transition probabilities, respectively, and $k_{exp} = \tau_{exp}^{-1}$ ($k_r + k_{nr}$) is the experimental transition probability. The emission intensity, *I*, taken as the integrated intensity *S* of the emission lines for the ${}^5D_0 \rightarrow {}^7F_{0-6}$ transitions, is given by:

$$I_{i \to j} = \hbar w_{i \to j} A_{i \to j} N_i \equiv S_{i \to j} \quad \text{(Eq. 2)}$$

where *i* and *j* represent the initial (${}^{5}D_{0}$) and final (${}^{7}F_{0-6}$) levels, respectively, $\hbar w_{i \rightarrow j}$ is the transition energy, $A_{i \rightarrow j}$ the Einstein coefficient of spontaneous emission and N_{i} the population of the ${}^{5}D_{0}$ emitting level.¹⁻³ Because the ${}^{5}D_{0} \rightarrow {}^{7}F_{5,6}$ transitions are not observed experimentally, their influence on the depopulation of the ${}^{5}D_{0}$ excited state may be neglected and, thus, the radiative contribution is estimated based only on the relative intensities of the ${}^{5}D_{0} \rightarrow {}^{7}F_{0-4}$ transitions. The emission integrated intensity, *S*, of the ${}^{5}D_{0} \rightarrow {}^{7}F_{0-4}$ 4 transitions has been measured for compounds **5** and **5-dehyd** at 298 K.

Because the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition does not depend on the local ligand field of the Eu³⁺ ions (due to its dipolar magnetic nature) it may be used as a reference for the whole spectrum, *in vacuo* $A({}^{5}D_{0} \rightarrow {}^{7}F_{1})=14.65 \text{ s}^{-1}, {}^{4}$ and k_{r} is given by:

$$k_r = A_{0 \to 1} \frac{\hbar \omega_{0 \to 1}}{S_{0 \to 1}} \sum_{J=0}^{4} \frac{S_{0-J}}{\hbar \omega_{0-J}} \quad \text{(Eq. 3)}$$

where A_{0-1} is the Einstein coefficient of spontaneous emission between the ${}^{5}D_{0}$ and the ${}^{7}F_{1}$ levels. An average index of refraction of 1.5 was considered for both samples, leading to $A({}^{5}D_{0} \rightarrow {}^{7}F_{1}) \approx 50 \text{ s}^{-1.5}$.

The number of water molecules (n_w) coordinated to Eu^{3+} and Tb^{3+} may be determined using the empirical formula of Kimura & Kato (with an intrinsic error of ±0.25) using the ambient temperature lifetimes of the as-prepared and dehydrated materials:⁶

$$n_w = A \times \left(\frac{1}{\tau_{Exp}}\right) - B$$
 (Eq. 4)

where A = 1.1 and B = 0.71 for Eu³⁺, and A = 4.0 and B = 1.0 for Tb³⁺.

8. References

- 1. L. D. Carlos, Y. Messaddeq, H. F. Brito, R. A. S. Ferreira, V. D. Bermudez and S. J. L. Ribeiro, *Adv. Mater.*, 2000, **12**, 594-598.
- 2. O. L. Malta, H. F. Brito, J. F. S. Menezes, F. Silva, S. Alves, F. S. Farias and A. V. M. deAndrade, *J. Lumines.*, 1997, **75**, 255-268.
- 3. O. L. Malta, M. A. C. dosSantos, L. C. Thompson and N. K. Ito, J. Lumines., 1996, 69, 77-84.
- 4. M. H. V. Werts, R. T. F. Jukes and J. W. Verhoeven, *Phys. Chem. Chem. Phys.*, 2002, **4**, 1542-1548.
- 5. M. F. Hazenkamp and G. Blasse, *Chem. Mat.*, 1990, **2**, 105-110.
- 6. T. Kimura and Y. Kato, J. Alloy. Compd., 1995, 225, 284-287.